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The maximum amplitude of a waveform corresponding to a particular harmonic spectrum depends
on the phases of its harmonic components. A waveform with a low peak-to-rms ratio is desirable in
situations requiring a maximum signal-to-noise ratio. This paper introduces a genetic
algorithm-based method for selecting the phases that produces better results than previously
described methods. Results for four different amplitude spectra are given. For the case of a flat
spectrum with up to 40 harmonics, the genetic algorithm finds peak factors~peak/& rms! ranging
from 0.98 to 1.24. ©1996 Acoustical Society of America.

PACS numbers: 43.60.Gk, 43.75.Wx

INTRODUCTION

Many applications of computer music, signal process-
ing, and communications benefit from minimizing the peak
amplitude of a periodic signal. For instance, wavetable syn-
thesis stores one period of a waveform in memory and uses
table lookup to find the sample values. If the average or rms
amplitude of the waveform is small compared to its peak
amplitude, a poor signal-to-quantization noise ratio results.
Conversely, a waveform with phases carefully chosen to
achieve a minimum peak amplitude will have a maximal
signal-to-noise ratio.

A closed-form solution of the peak amplitude problem
does not exist. However, several researchers have investi-
gated ad hoc solutions to the problem~Schroeder, 1970;
Pumplin, 1985; van den Bos, 1987!. Schroeder and van den
Bos report their results with respect to a peak-to-peak factor
rather than the maximum absolute peak. With the discrete
waveform defined by

sn5 (
k51

K

ak cos~2pk f1n/N1fk!, ~1!

whereN@K, the peak-to-peak factor is defined as

peak-to-peak factor5
max~sn!1 max ~2sn!

2&srms
, ~2!

where

srms5S 0.5(
k51

K

ak
2D 1/2. ~3!

However, for reasons given below, we prefer the following
definition:

peak factor5 max usnu/&srms, ~4!

which is equal to the peak amplitude~max(usnu)! when the
harmonic amplitudes are normalized so that the sum of their
squares equals 1.0.

When the minimum and maximum signal values happen
to have the same absolute value~e.g., for waveforms having
odd symmetry!, the two definitions give identical results.
Note that for a sine wave~K51!, both the peak factor and
peak-to-peak factor are 1.0. More often, however, the criteria
are different. The peak factor criterion is more stringent in
the sense that it looks at only the worst peak rather than
averaging the positive and negative peaks. A difference be-
tween the criteria occurs in applications like digital wave-
table synthesis where the signal-to-noise ratio directly de-
pends on the maximum absolute peak amplitude. Introducing
a dc offset corresponding to the average of the minimum and
maximum peak values in order to equalize these peaks can
cause problems: audible ‘‘clicks’’ when the signal begins and
ends. Most of the numerical examples presented later will
include both peak factor~peak amplitude! and peak-to-peak
factor measures for comparison.

I. EXISTING METHODS

Various strategies exist for choosing the harmonic
phases to produce low peak amplitudes. Setting all the
phases to zero gives the worst case and largest peak factor.
With zero phases, all peaks of the individual cosines line up,
so the maximum signal value equals the sum of the partial
amplitudes~AK for flat spectra!. Exhaustive search and use
of minimax search strategies~van den Bos, 1987! are only
practical for spectra having small numbers of harmonics.

Picking random phases~Pumplin, 1985; van den Bos,
1987! provides a reasonable starting point for finding re-
duced peak factors. Extending this idea, a program could
generate several sets of random phases and then select the set
with the lowest corresponding peak amplitude.
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To improve on random phase selection, Schroeder
~1970! derived a simple and intuitive formula for the phases
as follows:

fk5f122p(
j51

k21

~k2 j !aj
2, for k52,3,...,K, ~5!

wheref1 can be an arbitrary value andaj is the normalized
amplitude of thej th harmonic partial. Schroeder’s formula
makes some assumptions about the signal’s spectrum. If
these assumptions are not met, it may not perform well.
These assumptions include a small spectral bandwidth rela-
tive to the center frequency, and a smooth amplitude spec-
trum. Spectra with sharp resonances and long exponential
tails of upper harmonics fail to meet these assumptions.

A more recent method proposed by van den Bos~1987!
does not make assumptions about the spectrum of the signal.
Van den Bos’s technique attempts to select the phase angles
so that the signal is maximally similar to a two-level signal.
The technique starts with random initial phases and uses a
discrete Fourier transform-based iterative procedure to con-
verge to a local minimum. The procedure significantly im-
proves on Schroeder’s approximation at the modest cost of
the iterative computation. However, the procedure converges
to a local optimum that depends on the initial conditions. Van
den Bos recommends repetition of the procedure several dif-
ferent times with different sets of initial phases.

Similarly, Pumplin~1985! proposed a gradient search of
the phase space where minimization of (1/N)(n50

N21sn
4, the

signal’s fourth moment, is the criterion. As with van den
Bos’s technique, simple gradient search converges to the
nearest local optimum, and like van den Bos, Pumplin sug-
gests repetition of the procedure with different initial phases
to achieve better results.

None of the above procedures guarantees an optimal so-
lution. Can another procedure find better results? The next
section addresses this question.

II. A GENETIC ALGORITHM-BASED PROCEDURE

The method for peak amplitude minimization proposed
in this section uses a genetic algorithm~Goldberg, 1989;
Holland, 1975! to select the phase angles. Genetic algorithms
~GAs! employ natural selection and evolutionary-inspired
operators like crossover and mutation to optimize combina-
torial problems such as the phase angle alignment task.

GAs work with a population of candidate solutions to
efficiently examine the search space and explore its various
local optima in parallel. This robust parallel exploration is
well suited to the phase alignment problem where it is better
to avoid converging to local minima. We can use the GA to
systematically explore the search space rather than start the
procedure over with several different initial conditions.

Since GA methods avoid simple convergence to local
optima, we can seed the initial population with approxima-
tions to phase values found by van den Bos’s procedure and
then proceed. The advantage is faster convergence, though
there is a risk that the GA may neglect to explore promising
portions of the search space if the population converges too
quickly to the seeded solutions. An expedient solution is to

perform a quick run with seeding and resort to a second
unseeded run only if the seeded GA does not find a solution
significantly better than the seeds.

To use a GA, we must specify an objective function and
a method for coding the phases. The discrete-time signal that
we wish to have a low peak amplitude is given by Eq.~1!,
which we repeat:

sn5 (
k51

K

ak cos~2pk f1n/N1fk!, ~6!

where ak and fk are the amplitude and phase of thekth
harmonic, respectively,N is the number of samples per
period andK is the number of harmonics. The problem is
then to minimize

C~$fk%!5 max usnu, 0<n,N ~7!

by choosing $fk% such that 0<fk,2p for k52,3,...,N
~without loss of generality, we setf1 to zero!.

Now let us consider the encoding of the phases. Most
GAs usually work with binary-valued encoded parameters.
We can meet this requirement by introducing an integer-
valued parameterpk that indexes sampled values of the
phases. The discrete phase version of Eq.~6! is

sn5 (
k51

K

ak cos~2pk f1n/N12ppk /L !, ~8!

and we now wish to minimize

C~$pk%!5 max usnu, 0<n,N ~9!

by choosing$pk% such that 0<pk,L52M. With L taken as
a power of two, it is natural to interpretpk as a binary integer
for encoding. Equations~8! and~9! define the objective func-
tion that the GA must minimize.

Our procedure uses a standard simple genetic algorithm
with binary tournament selection, one-point crossover, and a
mutation rate equal to the reciprocal of the number of bits in
the encoding. Goldberg~1989! gives more details on the
workings of genetic algorithms. Numerical results for the
GA-based technique and the other methods are presented and
compared in the next section.

The genetic algorithm is a relatively efficient iterative
procedure. The speed of the GA directly depends on the
number of phases. For a few phases, the GA completes in
just a couple seconds on a Silicon Graphics Indigo worksta-
tion ~the Indigo benchmarks at approx. 100 000 Dhrystones/
second!; for 50 or more harmonics, the GA requires several

TABLE I. Peak amplitudes and peak-to-peak factors for example 1.

Peak amplitude Peak-to-peak factor

worst 3.61 3.01
avg100 random 1.88 1.72
min100 random 1.39 1.39
Schroeder 1.24 1.17
van den Bos 1.10 1.07
GA 1.04 1.04
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minutes. Though it is slower than van den Bos’s iterative
procedure, it usually does not need to be repeated with dif-
ferent initial conditions.

III. NUMERICAL EXAMPLES AND RESULTS

This section presents four numerical examples and gives
the peak amplitudes and peak-to-peak factors for the
Schroeder, van den Bos, and GA methods. The first two ex-
amples were originally proposed by Schroeder~1970!, while
the third was given by van den Bos~1987!. These earlier
examples use simple theoretical spectra to compare how the
methods performed. We expand on the second example~a
flat spectrum! by showing how the peak amplitude varies
with the number of harmonics in the spectrum.

We also give a fourth example based on a measured
tenor voice spectrum. If we were trying to model a tenor
voice by wavetable synthesis, we would likely load one or
more wavetables with measured tenor spectra. Thus this ex-
ample represents a typical problem one might encounter in
sound synthesis.

In each case the spectrum is normalized so that the sum
of the squared harmonic amplitudes equals 1. With normal-
ization, the peak amplitude corresponds to the peak factor as
defined in Eq.~4!. Since the rms amplitude is always the
same for normalized spectra~0.7071!, this allows compari-
son of the peak amplitudes from different signals.

Following van den Bos’s lead, we useN5512 samples
per period. This allows more than ten samples per period for

the highest harmonic used in the examples~K550!.
Example 1: Schroeder gives the following normalized

amplitude spectra as his first example~1970!:

ak5~1/A8! sin @~2k21!/32#, k51,2,...,16. ~10!

Table I summarizes the peak amplitudes found by the various
methods. The worst case occurs when all the phases are set
to zero, giving a large peak of 3.61. Generating 100 sets of
random phases produced an average peak amplitude of 1.88
and a minimum of 1.39, substantial improvements over the
worst case. Schroeder’s phase formula yields further im-
provement~1.24!, and van den Bos’s technique does even
better by returning 1.10. The GA-based method, using a
resolution ofL564 values~an encoding ofM56 bits! per
phase, achieves the lowest peak amplitude~1.04!. Figure 1
shows the resulting signal and gives the actual phases used
for the GA-derived case.

FIG. 1. Waveform and phase values for example 1 with GA-minimized peak amplitude.

TABLE II. Peak amplitudes and peak-to-peak factors for example 2 with
phases restricted to values of 0 orp.

Peak amplitude Peak-to-peak factor

worst 5.57 3.44
avg100 random 1.90 1.73
min100 random 1.54 1.42
Schroeder 1.41 1.38
van den Bos 1.26 1.26
GA 1.21 1.20
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Table I also shows the peak-to-peak factors for each of
the methods. For example 1, the two criteria give similar
results. The solutions found by the GA differ under the two
criteria, but only slightly.

Example 2:Schroeder gives a flat spectrum for his sec-
ond example:

ak51/AK, k51,2,...,K, ~11!

FIG. 2. ~a! Waveform and 0 orp phases for example 2 with GA-minimized peak amplitude.~b! Waveform and unrestricted phase values for example 2 with
GA-minimized peak amplitude.~c! Minimum peak amplitudes found by the various techniques for a flat spectra with different numbers of harmonics.~d!
Waveform of 14-harmonic flat spectrum found by GA with a peak amplitude of 0.9795.
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with K531.
Schroeder also limits the phases to the discrete values 0

andp in order to produce a waveform with even symmetry.
This condition is easily met with the GA-based procedure; it
simply requires a resolution ofM51 bit for each harmonic
phase.

Table II shows the performance of the techniques on
example 2 with the restriction to 0 andp phase values. The
GA finds the lowest-peak amplitude with reductions similar
to those shown in example 1. The GA’s peak-to-peak factor

also improves on a peak factor of 1.21 found by Schroeder
using number theory for the special case of white spectra
~Schroeder, 1984!. Figure 2~a! shows the waveform pro-
duced by the GA’s solution.

Few applications of flat spectra actually require an even
signal. Table III shows how the various techniques perform
with unrestricted phase values. Van den Bos’s technique and
especially the genetic algorithm find very low peak ampli-
tudes, just as they did on example 1. Schroeder’s method
shows only a slight improvement over its result for the 0/p

FIG. 2. ~Continued.!
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case. Figure 2~b! shows the waveform produced with the
GA-derived minimum peak phases.

Since flat spectra play an important role in many appli-
cations, we also compare the performance of three of the
methods on the phase alignment of flat spectra with 2–40
harmonics. Figure 2~c! shows the results.

Schroeder’s technique consistently returns a minimum
peak amplitude of about 1.34 across the range, while van den
Bos’s method and the GA find much lower values. The gen-
eral trends of both of the latter two methods move sharply
downward for the first seven harmonics, have a relatively flat
region for harmonics 8–20, and trace a gradually increasing
curve above harmonic 20. The GA-derived peak amplitudes
are consistently less than those derived by the van den Bos
method and on average are less by 6%.

One might have conjectured from previous results that
the peak factor of a waveform could never be less than 1.0,
which is the case for the pure sine wave~K51!. However, as
shown in Fig. 2~c!, the GA method found peak amplitudes

slightly less than 1.0 for flat spectra with 7, 8, 11, 12, 14, 19,
and 20 harmonics, and was very close to 1.0 for several
others. The lowest value of peak amplitude found was
0.9795 for the 14-harmonic flat spectrum waveform shown
in Fig. 2~d!. Obtaining a peak amplitude less than 1.0 re-
quires highly accurate phase values. The real lower bound
peak amplitude for normalized spectra remains an interesting
question for future study.

Example 3: Van den Bos proposed a third example,
whose spectral shape does not satisfy Schroeder’s assump-
tions. The spectrum consists of isolated harmonics:

ak5
1

A6
, k52q, 0<q<5,

50, otherwise. ~12!

Table IV lists the results for the different methods. For this
difficult case, the GA shows significant improvement over
the methods of Schroeder and van den Bos, especially when

FIG. 3. Waveform and phase values for example 3 with GA-minimized peak amplitude.

TABLE III. Peak amplitudes and peak-to-peak factors for example 2 with
unrestricted phases.

Peak amplitude Peak-to-peak factor

worst 5.57 3.44
avg100 random 2.06 1.88
min100 random 1.56 1.52
Schroeder 1.34 1.38
van den Bos 1.11 1.07
GA 1.04 1.04

TABLE IV. Peak amplitudes and peak-to-peak factors for example 3.

Peak amplitude Peak-to-peak factor

worst 2.45 2.07
avg100 random 1.96 1.80
min100 random 1.60 1.57
Schroeder 1.64 1.60
van den Bos 1.59 1.47
GA 1.42 1.42
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the peak amplitude criterion is used. Van den Bos’s proce-
dure does better with respect to the peak-to-peak factor cri-
terion, but this is because the waveform it finds, for example,
3, has a very asymmetrical shape, tending toward a unipolar
signal.

Figure 3 shows the signal produced by the GA-
determined phases, using a resolution ofL5512 samples per
phase. Since it does not at all resemble a two-level signal,
van den Bos’s method would reject it, even though it has a
significantly lower peak amplitude than any of the phase sets
actually found by his procedure.

Example 4: Finally, we test the methods on a spectrum
measured from a tenor voice. Figure 4 shows a plot of the
spectrum and also lists the normalized partial values, while
Table V summarizes the results found by the various tech-

niques. Like example 3, the spectrum here does not fit
Schroeder’s assumptions, as the results confirm. Schroeder’s
method does about as well as an average of results obtained
using sets of random phases. Both van den Bos’s method and
the GA technique yield much better performance. Figure 5
shows the waveform generated using the GA-derived phases.
The GA-determined peak amplitude of 1.01 is very close to
the value for a sine wave.

IV. CONCLUSIONS

The genetic algorithm-based method has proved its ef-
fectiveness in designing low peak amplitude signals. The
method minimizes the peak amplitudes by systematically ex-
ploring many local optima of the phase space in parallel, and
has modest software requirements. The method’s results are
comparatively independent of seed values, and the calcula-
tions typically take between a few seconds and a few minutes
on a low-cost computer depending on the number of harmon-
ics involved.

The peak amplitudes found with the GA method aver-
aged 6% lower than the best method previously described,
the van den Bos method. For some flat spectra we unexpect-
edly found peak amplitudes less than 1.0, the value for a

FIG. 5. Waveform and phase values for example 4 with GA-minimized peak amplitude.

TABLE V. Peak amplitudes and peak-to-peak factors for example 4.

Peak amplitude Peak-to-peak factor

worst 3.19 1.99
avg100 random 1.80 1.65
min100 random 1.34 1.31
Schroeder 1.75 1.56
van den Bos 1.06 1.05
GA 1.01 1.01
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sinewave. This raises some interesting theoretical questions-
about the unknown peak factor lower bound for flat spectra.
1/& is probably a lower bound, but can this be proved?
What about a tighter bound? And why does the peak ampli-
tude depend on the number of harmonics in such a peculiar
way? Further investigation is needed to address these issues.

APPENDIX

The following phase values were found by the genetic
algorithm for the special case of flat spectra for various num-
bers of harmonics. The number of harmonics precedes its
respective phase set. Figure 2~c! gives the peak amplitudes
corresponding to these phase sets.

FIG. 4. Original tenor spectrum and normalized partial values.
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