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Fundamental frequency (F0) estimation for quasiharmonic signals is an important task in music 
signal processing. Many previously developed techniques have suffered from unsatisfactory 
performance due to ambiguous spectra, noise perturbations, wide frequency range, vibrato, and 
other common artifacts encountered in musical signals. In this paper a new two-way mismatch 
(TWM) procedure for estimating F 0 is described which may lead to improved results in this 
area. This computer-based method uses the quasiharmonic assumption to guide a search for F o 
based on the short-time spectra of an input signal. The estimated F 0 is chosen to minimize 
discrepancies between measured partial frequencies and harmonic frequencies generated by trial 
values ofF0. For each trial F o, mismatches between the harmonies generated and the measured 
partial frequencies are averaged over a fixed subset of the available partials. A weighting scheme 
is used to reduce the susceptibility of the procedure to the presence of noise or absence of certain 
partials in the spectral data. Graphs of F 0 estimate versus time for several representative 
recorded solo musical instrument and voice passages are presented. Some special strategies for 
extending the TWM procedure for F0 estimations of two simultaneous voices in duet recordings 
are also discussed. 

PACS numbers: 43.75.Yy 

INTRODUCTION 

Many techniques for estimating the fundamental fre- 
quency, F o, of monophonic quasiharmonic signals have 
been developed or proposed (Hess, 1983). Time-domain 
methods include multiplicative autocorrelation (Sondhi, 
1968; Brown and Zhang, 1991), subtractive autocorrela- 
tion, i.e., the average magnitude difference function or op- 
timum comb (Ross etal., 1974; Moorer, 1974; Martin, 
1982), and methods based on linear prediction (Markel 
and Gray, 1976; Rabiner and Schafer, 1978). Frequency- 
domain methods include the cepstrum (Noll, 1966), the 
period histogram (Schroeder, 1968; Piszczalski and Galler, 
1979), maximum likelihood methods (Rife and Boorstyn, 
1976; Wolcin, 1980), and, more recently, harmonic pattern 
matching procedures (Doval and Rodet, 1991; Brown, 
1992; Brown and Puekette, 1993). The continuing research 
interest in this area is an indication that no completely 
successful system for fundamental frequency estimation for 
a wide range of audio signal types is yet available. Without 
a full, objective comparison of the various F 0 estimation 
procedures it is difficult to draw specific conclusions about 
the strengths and weaknesses of existing techniques. None- 
theless, algorithms which do not explicitly address the 

'}Portions of this work were presented at the 124th Meeting of the Acous- 
tical Society of America, New Orleans, LA [J. Acoust. Soc. Am. 92, 
2429 (A) (1992)]. 

presence of noise, reverberation, and other common signal 
degradations are particularly diffcult to evaluate for real- 
world analysis purposes. 

Time-domain approaches make use of the assumed pe- 
riodic nature of the input signal by identifying waveform 
features such as peaks, zero crossings, and other periodic 
structures. The time duration between the repetitive corre- 
sponding features is expected to be the waveform period, 
1/F o. Other time-domain methods use an autocorrelation 
approach to identify waveform periods, based on the no- 
tion that we expect one cycle of a periodic signal to be 
highly correlated with the next. Similarly, frequency- 
domain techniques make use of the fact that the spectra of 
periodic time-domain signals exhibit quasiharmonic spec- 
tral structures manifested by regularly spaced peaks in the 
magnitude spectrum. Thus the frequency estimation prob- 
lem becomes a task of determining the set of harmonic 
frequencies which, in some sense, best match the positions 
of the spectral peaks. 

Other transform techniques, such as the cepstrum and 
linear predictive coding, take the process one step further 
by separating the power spectrum into an excitation com- 
ponent that varies relatively rapidly with frequency (har- 
monies of a relatively low fundamental), and a system 
function that varies relatively slowly with frequency 
(higher frequency formants). In the cepstrum the funda- 
mental frequency estimation reduces to a problem of iden- 
tifying the periodicity of the Fourier magnitude spectrum. 
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This paper concerns the development of more versatile 
and robust F 0 estimation procedures that are appropriate 
for use in monophonic and simple polyphonic situations, 
such as duets. In this paper we first present several of the 
research issues related to F0 estimation. Next we describe 
the previously reported two-way rnismatch Fo estimation 
technique (Maher, 1990) to avoid the problems encoun- 
tered in processing real signals containing noise and rever- 
beration. Our implementation and intended applications 
are reviewed next, followed by a discussion of several ex- 
amples. Finally, we conclude with a description of some 
additional research issues for the future. 

I. RESEARCH ISSUES FOR Fo ESTIMATION 

Several problems plague researchers designing meth- 
ods for automatic determination of fundamental frequency. 
First, most algorithms suffer from degraded performance 
when the amplitude of a signal is low, suclh as during the 
release of a musical note, primarily because of the dimin- 
ished reliability with which the signal parameters can be 
measured under conditions of reduced signal-to-noise ra- 
tio. Second, there is an inherent ambiguity in estimating 
the F0 for a series of partials, since two musical notes 
separated by one or more octaves share coincident partials. 
Estimators are particularly prone to octave errors when 
attempting to process musical instrument sounds with in- 
sufficiently strong Fo components or in situations where 
the expected fundamental frequency spans a range larger 
than 1 oct. Finally, the general difficulty of accommodating 
the effects of nonideal signal characteristics (e.g., back- 
ground noise, inharmonicity, and signal transients) means 
that there is no certainty that an algorithm that performs 
well on one input example will perform as well on all 
examples, even those that are ostensibly similar to the 
model. This makes validation of an estimation method 

quite difficult and complicates performance comparisons 
among various F 0 estimation techniques. 

An additional difficulty occurs when attempting to 
process a recording made in a reverberant environment. 
Because of the reverberant character of the recording 
space, the acoustical signal captured by the microphone 
includes not only the direct sound of the instrument at a 
particular instant, but also echoes of previous notes that 
have not yet died away. Thus, the recorded signal actually 
contains a multiplicity of competing signals due to the re- 
verberation. Although the reverberation problem could be 
virtually eliminated by using only close-miked or contact- 
miked recordings or by recording in an anechoic room, 
there are many situations where such pristine recordings 
are either unavailable or impractical. At least in the field of 
Western classical music, recording artists and music listen- 
ers prefer performances done in halls with significant 
amounts of reverberation; thus, many archival recordings 
that are of interest to musicological researchers are inher- 
ently contaminated with this artifact. 

We have encountered yet another problem: For the 
case of F 0 detection of sounds having very 1hw partials, we 
find that it is difficult for algorithms optimi.zed for sounds 
having many harmonics to determine whether the mea- 

sured components correspond to the fundamental fre- 
quency or to the second harmonic of an extremely weak 
fundamental. This did not affect our results for the musical 

instruments we processed, but it does cause unexpectecl 
problems with, for example, simple whistle input, which i•s 
primarily sinusoidal. 

The research scenario becomes even more problematic 
in the case of polyphonic F 0 estimation, where the task 
to identify the fundamental frequency of a musical voice in 
the presence of competing voices. While it may be tempting 
simply to apply a particular monophonic F0 estimation 
technique to the polyphonic case, in practice this is usually 
doomed to failure. For example, monophonic methods 
based on the time-domain periodicity of the input signH 
must now contend with more than one periodicity, and 
worse, the frequency relationships of the simultaneous 
voices usually involve overlapping spectral components re,- 
suiting in amplitude beating or cancellations among the 
partials. Comparable problems exist for most frequency'- 
domain methods, since it is not clear which spectral com- 
ponents belong to which voice or may be caused by more 
than one voice. 

II. RATIONALE AND IMPLEMENTATION 

Our computer program for fundamental frequency 
analysis is designed to process time-varying spectral data 
produced by fixed-window (typically, 46 ms) short-time 
Fourier transform (STFT) analysis of an acoustic signal 
input (Allen and Rabiner, 1977). For each time frame 
(typically, 5.8 ms), this program saves magnitude spec- 
trum peaks, henceforth referred to as measured partials, 
which have been refined in amplitude and frequency using 
a parabolic interpolation technique (Smith and Serra, 
1987; Maher, 1990 and 1991). The theoretical accuracy of 
the partial frequency measurement is about 5% of the Fast 
Fourier transform (FFT) bin spacing, e.g., about 2 Hz 
with a 44.1-kHz sample rate and 1024-point FFT (Brown 
and Puckette, 1993). The window length must be chosen 
to trade-off the reduced time resolution available when us- 

ing a long window with the reduced frequency resolution 
available with a short window. In order to resolve reliably 
the partials of a harmonic signal with fundamental fre- 
quency of F o Hz, it is necessary for the spectral bandwidth 
of the analysis window to be approximately F0/2 Hz, cor- 
responding to a Kaiser window about four waveform cy- 
cles long. Thus, the 46-ms typical window is satisfactory 
for F 0 above approximately 87 Hz. The primary underly- 
ing assumption for the measurement off 0 is that the signal 
consists of a series of harmonic partials. However, we do 
not know which of the measured partials actually corre- 
spond to harmonics of the signal. Some "partials" may be 
caused by noise, reverberation, or other types of signal 
artifacts. Also, small (but important) uncertainties can oc- 
cur in the estimates of the partial frequencies. Moreover, 
some low amplitude partials in the original signal may 
escape detection and thus may be missing in the spectral 
data. In short, we are confronted with the vagaries com- 
monly associated with any real measurements on real sig- 
nals. 
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A. Improving the reliability of the F0 estimate: The 
mlsmatch error 

In order to compensate for some of the inherent deft- 
ciencies in the spectral data, we have designed a method 
for F 0 detection called the two-way mismatch procedure 
(TWM). The procedure is reminiscent of maximum like- 
lihood estimation, in that the measured spectrum is com- 
pared to a postulated harmonic spectral pattern. The 
TWM estimation procedure is based on the comparison of 
each measured sequence of partials from the STFT analysis 
(corresponding to a particular time frame) with predicted 
sequences of harmonic partials based on trial values of F 0. 
The discrepancy between the measured and predicted par- 
tials is referred to as the mismatch error. Of course, the 
mismatch error would be zero if a predicted F 0 were to 
match exactly the actual fundamental and the measured 
spectrum consisted solely of harmonic partials. However, 
the harmonics and partials would also "line up" for F0's 
that are one or more octaves above and below the actual 

fundamental; thus even in the ideal case, some ambiguity 
occurs. Furthermore, in real situations, where noise and 
measurement uncertainty are present, the mismatch error 
will never be exactly zero. 

Consider an example measured sequence of partials 
{200, 300, 500, 600, 700, 800} Hz. Choosing an F 0 of 100 
Hz would give the predicted sequence of {100, 200, 300, 
400, 500, 600, 700, 800}, where the predicted components 
at 100 and 400 Hz are not found in the measured data, but 
all the other measured components are accounted for. Se- 
lecting F0= 50 Hz also completely covers the measured 
partials, but many of the predicted partials (50, 100, 150, 
250, 350, 400, 550, etc.) are not found in the measured 
sequence. Similarly, choosing F 0= 200 Hz results in a pre- 
dicted sequence of partials {200, 400, 600, 800}, which 
correctly predicts some of the measured partials but misses 
others. Therefore, some means of identifying the best 
match between predicted and measured partial frequencies 
is necessary. 

Our solution has been to employ two mismateh error 
calculations. The first is based on the frequency difference 
between each partial in the measured sequence and its 
nearest harmonic neighbor in the predicted sequence. The 
second is based on the mismatch between each harmonic in 

the predicted sequence and its nearest partial neighbor in 
the measured sequence. The two measurements are not in 
general the same, as can be seen from the graphic depic- 
tions of Fig. 1. This two-way mismateh helps avoid octave 
errors by applying a penalty for partials that are present in 
the measured data but are not predicted, and also for par- 
tials whose presence in the measured data is predicted but 
do not actually appear in the measured sequence. The 
TWM approach also has the benefit that the effect of any 
spurious components or partials missing from the measure- 
ment can be counteracted by the presence of uncorrupted 
partials in the same frame. 

Our algorithm for determining the TWM error, whose 
minimum determines the F o for each frame, is based on 
three considerations given as follows: 

(a) The assumed harmonic relationship among the 

Predicted Measured 
Harmonics Partials 

Nearest 
Match 

sF (a) • (b) 

FIG. !. The two-way mismateh error calculation is a two-step process 
where for each frame (a) each measured partial is compared to the near- 
eat predicted harmonic, giving the measured-to-predicted error and (b) 
each predicted harmonic is compared to the nearest meastu•d partial, 
giving the predicted-to-measured error. The total TWM error is a 
weighted combination of these two errors. 

partials indicates that the frequency mismatch error, in Hz, 
between measured and predicted partial frequencies should 
be normalized by the frequency. Note that a mismatch of 
10 Hz for components near 50 Hz is worse (20%) than a 
mismateh of 10 Hz for components near 5 kHz (0.2%). 

(b) Since the STYr spectrum measurement algorithm 
returns information with an approximately linear resolu- 
tion, the fractional resolution, or Q, improves as frequency 
increases. Thus the higher partials have inherently better 
fractional resolution, which can help to improve the esti- 
mate of the corresponding fundamental frequency 
(Schroeder, 1968). 

(c) Stronger partials generally have higher signal-to- 
noise ratio than weaker partials. Stronger partials are, 
therefore, assumed to have more reliable frequency esti- 
mates and their presence is less likely to be due to noise or 
other spurious events. 

Based on the above guidelines, we have postulated an 
error weighting function, E•j. For measured partial n, E•j 
can be expressed as a function of the frequency difference 
between its frequency and the frequency of the nearest 
predicted harmonic (Afn), the measured amplitude and 
frequency of the partial (a n and f,), and the maximum 
amplitude of any partial in that frame (.timex). Also, it is 
clear from the above considerations that the error function 

E•, should have the following properties: 
Maximum error occurs when 

( 1 ) Afn/fn is large 
or if 

(2) Afn/fn is small and a•/Ama x is small. 
Minimum error occurs when 

(3) Afn/f, is small and a•/•4ma x is large. 
Any number of mathematical functions could be concocted 
to satisfy these conditions. We have designed a function, 
whose virtue is its simplicity, that has several coefficients 
which we have determined empirically for several cases 
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FIG. 2. An example error weighting function (E w) used in the TWM 
procedure. The error penalty depends upon the amplitude of the mea- 
sured partial normalized by the maximum amplitude partial in that 
frame, and the frequency difference between the measured partial fre- 
quency and the predicted harmonic frequency normalized by the mea- 
sured partial frequency. For example, the best penalty (smallest error) 
occurs for a strong partial with small frequency difference. 
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FIG. 3. Example TWM vs F 0 characteristic. The frequency correspond- 
ing to the minimum of this characteristic is the TWM estimate of the 
fundamental frequency (approximately 840 Hz in this case). Note that 
because many local minima are typically present a detailed search is 
required to identify the global minimum. 

tried. A standard formulation that operates perfectly with 
every input example has not been found, although we 
present a set of coefficients that produces good results in 
practice. An example error weighting function is illustrated 
in Fig. 2. 

The TWM calculation procedure for each frame can 
be summarized in the following form: 

Step 1: Obtain K measured partials with amplitudes, 
A k, and corresponding frequencies, fk, from a particular 
STFT analysis frame; determine Ama•=:max(A•) and 
fmax= max( fk}. 

Step 2: Choose ffund, the trial fundamental frequency 
(initially below the known frequency range of the input 
signal) and calculate the frequencies of N harmonics, 
fn=nfO,,d, where N=ceil{fmax/ftu,d} is the smallest in- 
teger greater than 

Step 3: For each fn determine the corresponding par- 
tial frequency fk that is closest to it; i.e., for each fn choose 
fl to minimize '\fn= I fn-fil. For k corresponding to 
the closest frequency, set an=A•. 

Step 4: Calculate the predicted-to-measured mismatch 
error according to the weighting formula: 

N 

Errp•m= • Ew(Afn,fn,an,Amax) 

• Afn' (fn)-•'+ Amax 
X [qAfn' (fn)-P--r]' (1) 

We have determined empirically that good values of p, q, 
and r arep=0.5, q= 1.4, and r=0.5. This choice is consis- 
tent with the weighting properties, e.g., the minimum error 
occurs when Afn/fn is small and an/Ama x is large. 

Step 5: For each of the f• determine the corresponding 
harmonic frequency fn that is closest to it; i.e., for each f• 
choose fn to minimize Aft = I fn-- I- For n correspond- 
ing to the closest frequency, set ak=A n . 

Step 6: Calculate the measured-to-predicted mismatch 
error according to the weighting formula: 

K 

Errm•/•= • Ew(Af•,fl•,a•,Amax) 
k=l 

K 

• Aft' (fD 
k = 1 A max 

x [qafk. (f•)-e-r], (2) 

where again the default values of p, q, and r are 0.5, 1.4, 
and 0.5, respectively. The total TWM error for the pre- 
dicted fruna is then given by 

Errtota • = Err•,_,•/(N) + pErr,• •,/(K), ( 3 ) 
where a good value of p has been found empirically to be 
0.33. 

Finally, steps 2 through 6 are repeated for a series of 
trial fundamental frequencies spanning the known range of 
the input signal. The spacing between the trial fundamental 
frequencies can be chosen to achieve the required precision 
for the overall estimate. An example of Errtota 1 vs. franc is 
plotted in Fig. 3. Note that there are several local minima. 
The estimated F 0 for the frame is taken as the trial fund•,- 
mental which yields the smallest value of Errtot• l . 

Given the TWM error calculation procedure, the pro- 
tess of searching for the best value of F 0 for a given frame 
could follow one of several possible strategies. Our ap- 
proach has been first to specify minimum and maximum 
frequencies for fru,a and then to perform a global searclh 
for the minimum mismatch error over the entire frequency 
range. This is done by iterating the trial frequency in equall- 
tempered semitone steps (i.e., by factors of 1.059 46) start- 
ing with the lowest frequency. However, this grid is often 
not fine enough to reveal the true TWM error minimum, so 
we then search in the vicinity of each local minimum witlh 
a progressively smaller step size until the change in Errtot,•l 
between steps drops below some arbitrary amount. Finally, 
the F 0 estimate corresponding to the least of the local min- 
ima is taken. 

There are three user-specified parameters that can be 
changed to adjust the TWM procedure to suit the partic:- 
ular characteristics of a given input signal: 
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( 1 ) Fo search range: The minimum and maximum fre- 
quencies for the F 0 search are chosen to span the expected 
fundamental frequency range of the input signal. Choosing 
a larger range unnecessarily increases the computation 
time by requiring more steps in the search process and 
increases the possibility for errors. 

(2) Number of predicted partials N: Selecting a large 
number of partials in the predicted sequence works best for 
recordings with minimal background noise and reverbera- 
tion. Selecting a small number of predicted partials works 
best with noisy signals by limiting the effect of spurious 
partials in the measured data, but at the expense of lower 
resolution due to the lack of error averaging across many 
measured partial frequencies. The choice of N also depends 
upon the known or assumed spectral characteristics of the 
signal source. For most examples we have used 8<N< 10. 

(3) Exponent p in error function: The p parameter 
adjusts the frequency-dependent weighting of the fre- 
quency difference calculation. A value of 0.5 (correspond- 
ing to a square-root weighting) has been found to work 
well on many examples, although p = 1.0 has provided bet- 
ter results for highly reverberant recordings due to the 
reduced emphasis placed on the low level, high-frequency 
components. 

As a simple example of the TWM calculation, Eqs. 
(1)-(3), consider the measured sequence of partials {200, 
300, 500, 600, 700, 800} Hz mentioned previously. In this 
example we would like to determine, say, whether 50, 100, 
or 200 Hz is the best F 0 assuming all the measured partials 
are approximately equal in amplitude. Using 50 Hz in 
the TWM formulas results in Errr•m=122.58, 
Errm•p=--3.0, and Errtotal=7.49. A 100-Hz F 0 yields 
Errp• m = 32.0, Errm•= -- 3.0, and Errtota I = 3.83. Finally, 
using 200 Hz gives Err•,•m=10.0, Errm•,=30.66, and 
Errtotal=4.2. In this case the minimum TWM error 
(Errtotal=3.83) occurs for F0=100 Hz, so 100 Hz is the 
fundamental frequency assigned to the measured sequence. 
Note that neither the predicted-to-measured nor measured- 
to-predicted errors acting alone can achieve an unambigu- 
ous F 0 choice. Although in this case the difference between 
the minima for 100 and 200 Hz is not huge, note that if we 
include a 100-Hz component in the measured spectrum the 
margin greatly improves. In this case the error for 200 Hz 
is about the same (4.0), whereas the error for 100 Hz 
drops to < 1.0, i.e., the distinctiveness of the result depends 
on the degree to which F 0 can be interpreted unambigu- 
ously from the original spectrum. 

B. The TWM procedure for duet signals 

We have extended the TWM procedure to handle the 
case of two simultaneous voices. This has been done by 
modifying the procedure to include measurements of mis- 
matches between the sequence of measured partial frequen- 
cies (for each frame) and apair of trial harmonic patterns. 
The goal is to find the pair of fundamental frequencies 
which together best represent the partials found in each 
frame. A brief description is given next. 

Two nonoverlapping frequency ranges are specified 
corresponding to the expected fundamental frequency 

ranges of the two musical voices. The nonoverlapping 
range requirement implies that either the lowest note of the 
upper voice is higher than the highest note of the lower 
voice for the whole duet, or else the duet has been divided 
into subsegments where this restriction is met. The TWM 
error calculation is performed as in the single voice case, 
except that the predicted sequence of partials is based upon 
two trial F 0 values: one chosen from the frequency range of 
the lower voice, the other from the range of the upper 
voice. The error minimization is accomplished by first step- 
ping the trial F 0 for the lower voice across the search range 
while keeping the upper F 0 fixed at the middle of the upper 
search range. Once the lower sweep is completed, the lower 
F0 is fixed at the frequency that resulted in the smallest 
error, then the upper F 0 is stepped across its search range 
in order to find the overall minimum. The resulting pair of 
F0's are assumed to be the fundamental frequencies of the 
two duet voices. 

Frequency tracking of duet signals has its own unique 
problems in addition to the problems already mentioned 
for the solo case. One problem stems from the limited fre- 
quency resolution of the STFT spectrum analysis: There is 
a high probability that certain original partials of the two 
voices will have frequencies close enough to one another 
that they will not be resolved by the STFT analysis, result- 
ing in "collisions" of the partials. That is to say, whenever 
the frequencies of two partials differ by less than the 
STFT's resolution, such a collision may occur. A collision 
may appear as a single broad peak instead of the usual two 
distinct peaks in the spectrum, or it may be manifested as 
a narrow peak having a time-varying amplitude due to 
beating between the partials. Since many musical intervals 
in common-practice music, e.g., unisons, octaves, and 
fifths, result in deliberate coincidence of harmonics, partial 
collisions are a significant problem for duet frequency 
tracking. We have worked out procedures for "unwrap- 
ping" collisions in both of these cases, but the accuracies of 
these methods are limited when the amplitudes and fre- 
quencies of the partials are changing significantly from 
frame to frame. 

Another problem is to somehow determine whether 
zero, one, or two voices are present at any given moment, 
since in general any of these conditions will frequently oc- 
cur in duets. A complete solution to this problem would 
require an accurate segmentation of the duet into portions 
corresponding to {voice 1 only}, {voice 2 only}, {voice 1 
and voice 2}, and {neither voice}. The segmentation task 
could be performed manually or through use of a yet-to-be 
developed automatic segmentation technique. 

III. EXAMPLES AND DISCUSSION 

We can best understand the strengths and limitations 
of the TWM frequency tracking procedure by observing its 
Fo versus time performance for several different musical 
signals. Note that all of the examples given in this section 
show the unaltered output of the F o tracker. These exam- 
ples are intended to demonstrate the underlying effective- 
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FIG. 4. TWM tracking results for a staccato arpeggio performed on a 
grand piano (F3, A3, Cs, and F4). The ordinate axis is calibrated loga- 
rithmically as notes on the musical scale (A4=440 Hz). Vertical "spikes" 
at the beginning or ending of each note are due to the nonharmonic 
character of the signal during rapid amplitude transients. 

ness of the raw TWM procedure. Of course, the results 
could be improved by further procedures invoking rules of 
musical context or by making use of other' specific knowl- 
edge about the signals being processed. 

A. Piano signal without reverberant overlap 

Figure 4 shows the TWM F 0 versus time output for a 
portion of an arpeggio sequence of notes played fortissimo 
on a grand piano (from track 39, index 3, SQAM compact 
disk, EBU, 1988). The recording for this example can be 
considered to be a "best case," since it contains very littile 
noise, reverberation, or other degradations. The TWM re- 
suits show the individual notes and rests of the arpeggio 
quite distinctly. The spikes are due to the initially uncer- 
tain fundamental frequencies of the piano notes, caused by 
brief, metallic thumps of hammers against strings. This 
effect is corroborated by an STFT spectrum analysis of the 
first two notes of the example (Fig. $). 

Another interesting feature of the frequency tracker 
output for piano tones is that a slight decrease in the F 0 
estimate occurs during the decay of each note. This is prob- 
ably caused by inharmonicities of the partials of piano 
tones; since high-frequency partials are normally 
"stretched" relative to lower ones (Fletcher, 1964) and 
because the TWM procedure seeks to find the best har- 
monic match to the measured partials, the initial positive 
inharmonicity tends to bias the F 0 estimate upward. This 
bias is reduced as the note decays, because the higher par- 
tials die out more quickly than the lower partials. 

10•00- 

96OO- 

8400' 

7200- 

6O0O- 

•oo- 

3600- 

2400- 

o.o 2.5 S.O 

Time (sec) 

FIG. 5. A portion of the STFT frequency vs time analysis of the grand piano arpeggio signal used for the TWM calculation in Fig. 4. The rows of 
horizontal tracks correspond to the partials of the piano signal. The nonharmonic behavior at the onset of each note is due to the sound of the hammer 
striking the string or strings. 
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FIG. 6. STFT frequency vs time analysis of a lcgato arpeggio performed on a flute in rcvcrberent surroundings. The harmonic behavior of the flute is 
observable as horizontal parallel lines. Noise due to the breathy quality of the flute and overlapping tracks at note boundaries are also apparent. 
Frequency vibrato can be identified, particularly in the upper partials. 

B. Flute signal with reverberant overlap 

Figure 6 shows the STFT spectrum analysis of a flute 
arpeggio (from track 13, index 1, SQAM compact disk, 
EBU, 1988). This recording was made with an omnidirec- 
tional microphone approximately 1 m from the instrument 
in a studio with 1.6-s reverberation time. The frequency 

versus time spectral data show discernible regions of par- 
allel tracks corresponding to the harmonic partials of each 
note of the arpeggio. However, note that the tracks overlap 
from one note to the next due to the reverberant extension 

of each released note which continues after the next new 
i C6•, - note has begun. The fiute's turbulent noise, or breathiness, c 

is also visible, particularly in the 1- to 1.2-kHz region. a ,: 
Frequency vibrato is visible in the highest partials. 

The corresponding frequency tracker output for the 
flute arpeggio (Fig. 7) shows the expected staircase shape. 
The frequency uncertainty of the transitions between many 
of the notes is due to the reverberation tail of the released 
note interfering with the F0 estimation of the new note. 
Once the reverberation level drops below the level of the 

O.O 

new note the TWM tracker locks onto the new Fo. Notice, 
however, that the TWM procedure is quite immune from 
effects of the turbulence noise in the flute signal. 

The two spikes in frequency that occur during the first 
note of the flute arpeggio are due to an interesting feature 
of the flute spectrum during the note. Figure 8 shows the 

time-variant amplitudes of a few harmonics for the first 
note of the arpeggio. Note that there are pronounced am- 
plitude fluctuations on each of the partials, due to the play- 
er's vibrato, and that the odd harmonics, including the 

0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3 7.0 

Time (sec) 

FIG. 7. TWM tracking results for the legato flute arpeggio with rever- 
beration. The tracker is designed for a single-voice input signal, but the 
monophonic assumption is violated at note boundaries where the rever- 
beration tail of the released note overlaps the onset of the next note, 
resulting in uncertain estimates of F 0. 
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FIG. 8. Explanation of momentary octave jumps duhng first note (G 4) of 
flute arpeggio. Brief octave jumps occur when the amplitude of the odd 
partials becomes small due to the performer's ribtaro: The missing odd 
partials result in an analyzed signal with F 0 equal to the second partial 
frequency. 

fundamental, actually drop out at two points in the vibrato 
cycle. This causes the fundamental frequency effectively to 
jump an octave at these points. Thus, the spikes shown in 
the TWM tracker output are not spurious; the tracker ac- 
curately follows the brief octave jumps .of the signal at 
those instants in time. 

C. Violin signals: Synthetic, close miking, and 
reverberant 

Figure 9 shows the musical score and TWM tracking 
results for a synthesized portion of Bach Partira III for 

. . •:11: :?•: :: 1ii:7:::i:::::::: :: :::::::::::::::::::::::::::::::::::::: ::: ::::::::: 
Time <sec) 

FIG. 10. TWM tracking results for a violin performance of the Bach 
Partita of Fig. 9, recorded in a nonreverberant studio with close miking. 
No explicit fundamental frequency is associated with the attack noise and 
bow scrape that occurs at the onset of several of the notes, resulting in 
spikes in the TWM results. 

violin (BWV 1006) to demonstrate a best-case perfor- 
mance of the algorithm. This example was synthesized 
with exact note durations (no gaps), eight equal-amplitude 
harmonics, and exact equal-tempered note tuning. As ex- 
pected, the TWM output shows excellent tracking capabil- 
ity with this pristine synthetic signal. 

Figure 10 shows the TWM results for a studio record- 
ing of a real violin performance by Joel Smirnoff of the 
same partira obtained with close miking to minimize the 
effects of the recording room. The TWM tracker is able to 
follow the recorded performance quite well, but spikes arm 
other fluctuations are present in the F 0 versus time graph. 
These effects are due to the characteristics of real violin 

signals. For example, noise, caused by the bow scraping the 
string as the performer attacks each note, results in fre- 
quency uncertainty at the beginning of each note. This 
should not be surprising, since in general noise violates the 
assumption of harmonicity on which the TWM procedure 
is based Also, the performer's vibrato and other stylistic 
performance expressions result in subtle frequency varia- 
tions which occur during the individual notes, as shown in 
the graph. 

Figure 11 shows the TWM results obtained from a 
reverberant recording (by violinist Itzhak Perlman) for 
the first two bars of the same Bach partita. The reverber- 
ation results in some uncertainty in the Fo estimate, such 
as near 0.6, 1.2, and 1.5 s, where the TWM output briefly 
hops to the F o of the previous note. This occurs when the 
reverberated energy from the previous note or notes is 
comparable to the signal level of the current note, thereby 
introducing some ambiguity about the best monophonic F o 
estimate at that instant in time. 

FIG. 9. Musical score and corresponding TWM tracking results for a 
synthesized performance of the Bach Partita III. The high quality of the 
F 0 estimate for the highly accurate, noise-free synthesized signal illus- 
trates the best-case performance of the algorithm. 

D. Soprano vocal signal with reverberant overlap 

An example of the TWM procedure applied to vocal 
performance by a soprano voice is shown in Fig. 12 (from 
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FIG. 11. TWM tracking results for a portion of a violin performance of 
the Bach Partita of Fig. 9, recorded in a reverberant auditorium. The 
tracking results are less accurate due to the nonmonophonic nature of the 
signal; reverberation from released notes is still present as each new note 
begins. 

track 44, index 1, SQAM compact disk, EBU, 1988). The 
TWM output clearly indicates the shape and extent of the 
performer's vibrato, as well as the frequency behavior at 
the legato transitions within the performed excerpt. ?lr• (SEC] 

E. Duet separation 

An example of the duet separation procedure is de- 
picted in Fig. 13. The duet consists of a soprano singing an 
arpeggio with vibrato while an alto sings a steady musical 
pitch. Figure 13(a) shows the analysis of the individual 
signals for reference, while Fig. 13(b) shows the TWM 
attempt for duet tracking. The major difficulty occurs 
when the fundamental frequencies of the two singers are 
close together, because of the numerous spectral collisions. 
For other examples of the duet separation procedure the 
reader is referred to previously published results (Maher, 
1990). 

c 5 c 5 
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FIG. 13. Example TWM attempt for duet tracking. (a) For reference, 
the individual TWM results for a soprano (arpeggio with vibrato) and 
alto (single musical pitch) performance. (b) The TWM duet tracking 
results. Note the inadequate results when the two voices have similar 
fundamental frequencies. 
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FIG. 12. TWM tracking results for a soprano vocal performance. The 
fluctuations in the F o estimate reflect the vibrato of the singer's voice. 

IV. SUMMARY AND CONCLUSIONS 

Thus far, results obtained using the two-way mismatch 
procedure for fundamental frequency estimation are en- 
couraging and have been used successfully in several music 
signal processing projects involving analysis of musical 
sounds of variable frequency. The procedure has been ap- 
plied to real signals corrupted by noise and reverberation 
with reasonable success, including examples where manual 
transcription would be quite difficult. The primary perfor- 
mance limitation of the TWM procedure is shared by most 
F 0 estimation techniques: nonharmonic signal components 
such as the bow scrape of a violin or the hammer strike of 
a piano. The interpretation and segmentation of the TWM 
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output has been left for a higher level process that makes 
use of musical context rules, a priori knowledge, and other 
heuristic decisions. 

There has not been a great effort so far to minimize 
computation time because this investigation was carried 
out in a non-real-time research environment. The fre- 

quency search and mismatch calculation is time consum- 
ing, particularly where the signal fundamental varies rap- 
idly and the F 0 estimation must be done many times per 
second, as in vibrato analysis. In these cases, the full TWM 
procedure (including the spectral analysis) implemented 
on an engineering work station requires more than 200 
times real time, i.e., each second of sound requires more 
than I rain of processing. An empirical relationship for the 
compute time to real-time ratio obtained for a NeXT 
68040-based work station is 

CT/RT=25 ß DWF. (FRO) t.?, 

where DWF is the "dry-wet" factor ( 1 for a nonreverber- 
ant studio recording, and 1.3 for a reverbcrant recording), 
and FRO is the fundamental frequency search range in 
octaves. Thus, we are currently investigating methods to 
estimate the fundamental with coarse resolution first, then 
to employ the TWM calculation to identify the "best" fun- 
damental with greater accuracy over a limited search 
range. 

Finally, the problems associated witht polyphonic F 0 
estimation remain a significant area for research. The prin- 
cipal difficulty is due to overlapping spectral components 
among the multiple voices, requiring a sou•rce of additional 
a priori information (orchestration, number of voices, etc. ) 
to enable the isolation of individual voices.. 
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