SOUNDMAKER: A WEB-BASED TEACHING TOOL FOR SOUND DESIGN
	Ryan Cavis, Sever Tipei
Computer Music Project

School of Music

University of Illinois
	Volodymyr Kindratenko
National Center for Supercomputing Applications

University of Illinois

Abstract
SoundMaker, a teaching tool developed for use in a Computer Music course is described. Supported by a powerful synthesis engine, it has a command line version as well as a version employing prepared scripts and one including random choices. In order to make it user friendly and accessible to a larger category of people, a web-based interface was developed using JavaScript functions and AJAX. The overall web system design is presented, the interface design is discussed, and further additions are considered. The entire project is treated as a test case for the future development of an interface for a much more complex Composition Module driving the same synthesis engine.
1. teaching tool
SoundMaker was initially developed for use in an introductory Computer Music course and has been employed as such every semester starting from the Fall of 2005 [1]. It is supported by LASS (Library for Additive Sound Synthesis), the synthesis engine for DISSCO (Digital Instrument for Sound Synthesis and Composition) [2]. In the DISSCO environment, CMOD, a complex Composition Module, serves as a driver for the library. SoundMaker, written in C++, fulfils a similar role by accessing and coordinating some of the LASS features but in a context that is much simpler and better suited for learning.

A powerful additive synthesis library, LASS offers detailed control over each individual partial through amplitude envelopes. Other envelopes describe fluctuations in both the magnitude and the rate of tremolo (amplitude modulation), vibrato (frequency modulation), transients, and changes in reverberation, as well as their location and movement in space (using an arbitrary number of speakers). In LASS the user may determine frequencies of entire sounds or of specific partials along with their evolution over time (glissando, sound bends). The tuning of partials may be determined through integer multiples of the fundamental (default option), assigned individually, or distorted in a somewhat random way.

As a tool destined for beginners, SoundMaker uses most but not all the options available in LASS. In its original version, it creates one sound at a time: the user enters the data from the keyboard answering various questions that appear on the screen. It is not an attractive proposition for someone wanting to generate even a short musical piece but it is useful for those learning about the detailed structure of sound. Moreover, one of the goals of the course is to introduce enough basic C++ features as to permit the students to modify the code with the purpose of making it, by the end of the semester, better suited to their own artistic goals.

Two other versions of SoundMaker are also available, in addition to the original one. One of them reads the input data from a text file (script) prepared ahead of time by the user. This enables the student not only to enter larger quantities of data describing significantly more sounds, but also to experiment by changing only small portions of the input and testing the modified script until a satisfactory result is obtained. Since most sounds share multiple features, relatively large scripts may be created simply by cutting and pasting.

The other version introduces randomness into the process. Values required for various parameters are chosen from within a given range according to a particular distribution and with the help of the random number generator. By modifying the range, the user can exert more or less strict control on the process. Compositions containing a rather large number of sounds can be produced this way, but the greatest advantage from a pedagogical point of view resides in the enhanced power of experimentation at the disposal of the student user.

By the end of the semester students learn how to combine features from all three variants according to the needs of their projects. For example, a few general questions might be answered through inputs from the keyboard at the beginning of the run (such as “how many sounds” or “what is the length of this piece”), with the rest being entered through a script that may contain limits on the random choices at one or more parameters.

All versions make use of envelopes (functions of time) that are stored in a library whose size is kept small on purpose. This serves to make the library less confusing for beginners and encourages students to create their own envelopes, thus enriching the library.

Less frequently, SoundMaker is also made available to students enrolled in general Music Theory courses dealing with contemporary music or in a Discovery course open to freshmen non-music majors. In such instances, course modules lasting only a few weeks are dedicated to Computer Music topics and the participants have to learn how to produce sounds in a short time. Here the emphasis is shifted from understanding how the application works and how it can be modified to the production of short pieces. This demands a user friendly interface that could also be offered to a larger category of people who might not be interested in programming. Choosing the World Wide Web as a platform ensures that large numbers of potential users gain access to SoundMaker. The URL for accessing SoundMaker is:
http://aurel.music.uiuc.edu
2. soundmaker as a web interface
System Design
The overall web system design for SoundMaker is shown in Figure 1. The system consists of three main components: a client side consisting of an interface that runs within a web browser content, a server side that translates client-side inputs into a configuration for SoundMaker, and a back-end service that is SoundMaker itself, executed under the control of the server-side software. The original SoundMaker application is used “as is” in the back-end service whereas the client-side and server-side components are new.
The SoundMaker web interface interacts with users entirely through a web browser. JavaScript functions on the client-side provide the fast-reaction user interaction (such as menus, trees and windows), while AJAX [3] calls to the server provide data input and verification. Any long-term data, such as the user’s identity and the actual composition data, is kept on the server. This leads to a dumb-client process model, which has several advantages over a smart-client model besides reducing the load time for the initial JavaScript. The interaction with the server is done almost entirely asynchronously, resulting in very little, if any, performance lost. The data model exists only on the server and thus promotes data integrity.
On the server-side, a Java servlet interacts with the web browser through AJAX. Besides being responsible for administrative acts such as loading and verifying user sessions, the servlet must also maintain a data model for user compositions. Rather than simply doing file I/O with the script files read in by SoundMaker, the servlet builds its own representation of the composition with an object-oriented data structure. This not only saves time when reading and writing to disk, but also allows the storage of other useful data such as the state of the user interface before it exited a particular composition.
[image: image1.jpg]Server

Client

shell exec

%

Web Browser

Filesystem

FILE DOWNLOAD

 auidio file output

 Figure 1. The SoundMaker web system architecture.

After the user enters all data and submits the composition to be generated on the server, an AJAX request is sent to the server to get the final audio file. The servlet takes the object model of the composition it has been building, and transforms it into a script file. This script file is similar to the scripting version of SoundMaker, but includes a few extra parameters to support mixing both random and precisely defined sounds. The servlet then calls an executable of the SoundMaker C++ program to read in this script and generate a sound file. Error checking for the parameters ensures that all the input parameters are within allowed limits and is the responsibility of the Java data model of the composition. This way, the user does not need to worry about debugging syntax errors in the script. The servlet watches the output of the SoundMaker execution until it sees certain keywords indicating successful completion.
After the audio file has been generated, the servlet sends a download link for the web-accessible audio file back to the client. This not only allows the generation of the entire composition, but also lets the user preview single sounds before committing them to the composition as a whole.

Interface Design

SoundMaker web interface is the only part of the entire system exposed to the end user. The most important aspect to the SoundMaker web interface is its usability for inputting and displaying multiple sounds. In designing the interface, two sets of requirements were considered. For the novice the interface must be clean and visually representative of the conceptual data used in a composition. But for expert users the interface should provide a fast way of inputting data without the need for extensive interaction, and avoiding labels and explanations that are obvious. The resulting interface (Figure 2) is a compromise between these two requirements.
The web interface is composed of two major sections: the current project tree and project commands (on the left), and the sound display/output area (on the right). New projects (collections of sounds) are created through the menu at the top, and displayed as a tree. Sounds, partials, and their “modifiers”, such as vibrato, tremolo, or glissando, are displayed in the tree as they are created. The check boxes next to each item in the tree allow the user to indicate which sounds or parameters should be included when generating the audio file. At least one sound must be generated, and each sound must have at least one partial, but the user is otherwise free to listen to any individual sound or group of sounds. This gives a very direct and easy way to preview and fine-tune the output, which is not available in the command line version of SoundMaker.
Users can save and load projects in a library which is stored on the server and persists between sessions. This, of course, requires a login system with some level of security. The front page of the SoundMaker web interface is a form requiring pre-existing logins and passwords, or the creation of new ones. After being redirected to the main SoundMaker program, for each library that is loaded there is the option of opening, copying, deleting, saving, and
[image: image2.jpg]) SoundMaker - Mozilla Firefox
fle Edt Vew Hgory Gookmatks ook el

@ - C 5w B (Dl o

SOUNDMAKER v1.0 beep sound-CLONE rename

Projects fun Help Sl

210 New Project 3 e
@) This is a sound
£11%) Another cool sound Duration
C1[@) Partial 1
@ Sound Template 3
@) beep sound
=&Y

™[4 Partial 1
™[4 vibrato 1 Partial Eny Num

[Add Sound

Patial Env Seale

Base Fraquency
Loudness

Deviation

Vibrato

Vibrato Amplitude Env
Num

Navigation

Display last script output
Display last eror check output seale
Audio fink

Vibrato Amplitude Env

Vibato Rate Env Num

creating new projects. Changes are stored on the server, but they are only written to the permanent library if the save option is selected. Unlike project files, the generated audio files themselves are overwritten each time the user generates a project, and so are not persistent. This keeps the server from being overloaded with a large number of audio files.

After being created, a sound is displayed in the frame on the right side of the screen. All attributes of the sound are shown and configured in this window. An input box changes color if an invalid parameter is entered, and tool tips help users understand what each parameter is defining. Changes are committed to the server and validated as they occur. Invalid parameters can be stored, but they must be corrected before generating the audio output. Information about the parameters and existing envelopes can be obtained by consulting the Readme and About pages under the web interfaces Help menu.
The sound definition windows also allow the user to integrate random functions into a project in two ways. First, rather than defining a parameter explicitly, one can
choose to randomize the parameter within a stated range. For example, instead of giving a sound duration “3.27”, the duration may be specified to be between “2.5” and “4”. The actual value is computed as the project is generated. Additionally, users can choose the type of random distribution (normal or triangular). The second way to use randomness is to generate more than one sound from the

same sound template. This can be indicated at the top of
each sound, and will create a certain number of sounds differing only by the parameters selected to be randomized.

Future Work

As the user base for SoundMaker grows, the interface will need to be updated to add features or streamline data input. One of the most obvious upgrades would be the addition of a graphical envelope manager. By enabling users to create and modify envelopes both through text files and by simply drawing them, it could open the more complex ideas behind SoundMaker up to those without enough experience to define envelopes based on the text alone. It would also open up the possibility of creating envelopes of almost any desired shapes.
Another useful feature to have in SoundMaker would be the ability to open more than one project at a time. This could aid in copying sounds between projects, saving a lot of time in data entry.

3. work in progress
The web-based interface developed for SoundMaker has served as a test case for designing a similar interface for DISSCO, more precisely for its composition module CMOD. This is a much more challenging task since CMOD is considerably more complex - it controls an arbitrary number of structural levels of the composition, offers many intricate methods of choosing values (including classes that handle patterns and sieves) for a large number of parameters, generates both electro-acoustic sounds and output for acoustic instruments and voices using traditional Western notation, etc. Nevertheless, SoundMaker’s interface was designed in such a way as to also form a basis for an extended CMOD version.

Although SoundMaker can produce an arbitrary number of sounds with an arbitrary number of partials in sequential or simultaneous streams, its scope is more modest than that of other applications which also deal with sound analysis, composition or score printing. Another distinguishing feature is that LASS, the synthesis engine for both SoundMaker and DISSCO is not a MusicN type of program since it does not use oscillators or an orchestra of instruments. Additionally, the web-based interface operates easily across platforms and does not rely on the host machine cycles for processing like other similar applications.

Since DISSCO is continuously evolving, an important consideration in designing the new graphic interface is to make sure that new features can be added with relative ease. The C++ code does not to exclude unforeseen additions or developments, and the web interface will facilitate changes in its own structure reflecting them.

Pieces created with DISSCO can be quite complex, long, routinely include thousands of sounds, and entering the data typically takes a good number of sessions. The files created by the user will be accessible on the website for revision as long as the project is active. It is expected that potential users will experiment with small projects, taking advantage of the graphic interface residing on the host web server. However, for larger projects, they will be invited to download the entire DISSCO package [4] along with the interface and install it on their home computer.
4. Acknowledgements
This work is supported by the NCSA/UIUC Faculty Fellows Program.
5. REFERENCES

[1] * - “Music 448 – Introduction to Computer Music”, http://ems.music.uiuc.edu/courses/tipei/M448/index.html
[2] Tipei, S. – “DISSCO: a Unified Approach to SoundSynthesis and Composition” (with Hans G. Kaper) in Proceedings of the International Computer Music Conference, Barcelona, Spain 2005, pp. 375-378
[3] Murray, Greg – “Asynchronous JavaScript Technology and XML (Ajax) With the Java Platform”, http://java.sun.com/developer/technicalArticles/J2EE/AJAX.
[4] * - http://sourceforge.net/projects/dissco
Figure � SEQ "IlustraciÛn" *Arabic �2�. Screenshot of SoundMaker web interface.

PAGE

