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Abstract. Detecting multiple pitches (F0s) and segregating musical instrument 
lines from monaural recordings of contrapuntal polyphonic music into separate 
tracks is a difficult problem in music signal processing. Applications include 
audio-to-MIDI conversion, automatic music transcription, and audio enhance-
ment and transformation. Past attempts at separation have been limited to sepa-
rating two harmonic signals in a contrapuntal duet (Maher, 1990) or several 
harmonic signals in a single chord (Virtanen and Klapuri, 2001, 2002).  Several 
researchers have attempted polyphonic pitch detection (Klapuri, 2001; Eggink 
and Brown, 2004a), predominant melody extraction (Goto, 2001; Marolt, 2004; 
Eggink and Brown, 2004b), and instrument recognition (Eggink and Brown, 
2003). Our solution assumes that each instrument is  represented as a time-
varying harmonic series and that errors can be corrected using prior knowledge 
of instrument spectra. Fundamental frequencies (F0s) for each time frame are 
estimated from input spectral data using an Expectation-Maximization (EM) 
based algorithm with Gaussian distributions used to represent the harmonic se-
ries. Collisions (i.e., overlaps) between instrument harmonics, which frequently 
occur, are predicted from the estimated F0s.  The uncollided harmonics are 
matched to ones contained in a pre-stored spectrum library in order that each 
F0`s harmonic series is assigned to the appropriate instrument. Corrupted har-
monics are restored using data taken from the library. Finally, each voice is ad-
ditively resynthesized to a separate track. This algorithm is demonstrated for a 
monaural signal containing three contrapuntal musical instrument voices with 
distinct timbres. 

1   Introduction 

Ordinarily, before separating individual instrument voices into separate tracks, poly-
phonic pitch detection must be performed on a monaural file instrument mixture. 
However, we considered two cases: 1) Obtaining F0 data and spectrum analysis from 
solo recordings before mixing them to monaural.  2) Obtaining F0 data directly from 
the monaural polyphonic mixture. While our ultimate objective is to solve the more 
general second case, because of the difficulty of polyphonic pitch detection, we have 
decided, for now, to focus on the first method. Moreover, starting with solo signals is 
necessary for evaluating the performance of our separation algorithm by comparing 
the original solo and separated signals, via listening and computing rms spectral er-
rors. See Fig. 1 for an overview of the pitch detection/separation method. 
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Fig. 1. Flow diagram of the pitch detection/separation algorithm 

2   Method 

2.1   Spectral Analysis  

The first stage of the method performs short-time peak-tracking spectral analysis  of 
the test signal to find a set of spectral peaks for each frame (McAulay and Quatieri, 
1986; Smith and Serra, 1987; Beauchamp, 1993).  Fig. 2 shows the spectral peaks for 
a single frame corresponding to 1.4 s from the start of a three instrumental voice mix-
ture (Bb clarinet, trombone, and alto saxophone). The 5 s clarinet and saxophone solo 
passages were clipped from a jazz CD (Art Pepper, 1996) and from a Mozart's Req-
uiem trombone solo recorded by Jay Bulen at the University of Iowa.  Obviously, the 
solos were not intended to harmonize or synchronize in any way. 
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Fig. 2. Spectrum of three instrument mixture at t=1.4 s 

2.2   Polyphonic Pitch Detection 

For each frame, each fundamental frequency (F0) candidate is represented as mixture 
of 10 Gaussian PDFs whose means are located at integer multiples of F0 and whose 
STD bandwidths are 30 Hz. Then the expectation of this candidate F0 is calculated by 
integrating the product of the mixture of Gaussian distruburions with the input spec-
trum (see Fig. 3).  This is in essence is the correlation of the input with the GMM in 
the frequency domain. 
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Fig. 3. Using a mixture of Gaussian distributions  to calculate the expectation of an F0 candidate 

Assuming that the input signal contains N simultaneous instrumental voices, the 
expectations of all possible combinations of N F0s are calculated in a specified F0 
search range. The optimum combination which yields the highest expectation is cho-
sen. However, as mentioned above, this method has so far only proved robust for 
N=1, so at this point we are using F0s based on the original individual tracks.  

2.3   Harmonic Collision Detection and Initial Separation  

For each frame, the frequencies of collided harmonics are calculated theoretically 
according to the location of the harmonics of the estimated F0s, within the resolu-
tion of the spectral analysis. These harmonics are ignored in the spectrum matching 
step. (see Fig. 4). So at this point, three spectra with missing harmonics for the  
current frame have been resolved, but they haven't been identified as paricular in-
struments yet.  

0 2000 4000 6000 8000 10000 12000
0

50

100

FREQUENCY

A
M

P
LI

T
U

D
E

 d
B

 

Fig. 4. Initially separated uncorrupted harmonics (denoted by .) for one of the estimated F0s 
from the spectrum of Fig. 2. * denotes the positions of estimated collisions where harmonic 
amplitudes are set to zero. 

2.4   Instrument Spectrum Library 

An instrument spectrum library (the training set) was created using University of 
Iowa musical instrument samples (Fritts, 1997-). This database includes individual 
tones performed at three different dynamics (pp, mf, and ff) in semitone F0 increments 
for clarinet, saxophone, and trombone. For each F0, the tones were analyzed 
(Beauchamp, 1993) and a spectrum space created consisting of the harmonic spectra 
of all of the frames for the three tones performed at that F0. The number of harmonics 
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for each F0 is given by floor(.5fs /F0), where fs is the sampling frequency. Then a K-
means clustering algorithm (Rabiner and Juang, 1993) partitioned the space into 10 
different clusters, and each cluster's centroid was calculated. (Fig. 5 shows an exam-
ple K-means “cluster spectrum”.) 10 spectra, which form a "sublibrary", were chosen 
as a compromise between providing adequate spectral diversity while having a suffi-
cient number of candidates  to average within each cluster. We have also experi-
mented with clustering according to spectral centroid ranges of the training data and 
calculating the average spectrum for each spectral centroid cluster (Beauchamp and 
Horner, 1995). Both methods yield similar results, but K-means avoids the problem of 
sparsity of data for some clusters. 
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Fig. 5. One of the K-means cluster spectra from the  clarinet library for F0=261.6Hz  

2.5   Instrument Spectrum Matching 

To replace the corrupted harmonics in an initially separated harmonic spectrum, the 
corresponding F0 sublibraries of the entire spectrum library are searched to find the 
best match to the uncorrupted input harmonics  (see Fig. 4). A least squares (LMS) 
algorithm is used to obtain the optimum scaling factor between the input and 
prestored spectra.  Basically, the instrument matching part is a nearest-neighbor 
classifier where the distance measure is a (possibly frequency-weighted) Euclidian 
distance between the corresponding harmonics of the initially separated and the 
sublibrary spectra. However, we have found that even 10 cluster spectra are insuffi-
cient to avoid artifacts that occur when switching between spectra. Therefore, after 
choosing the instrument library for the initially separated spectra, LMS is applied 
again to find an optimum interpolation between the best two spectra out of the 10. 
This improves matching for individual frames while smoothing transitions as the 
spectrum changes from one frame to the next. For synthesis we can either replace 
only the corrupted harmonics (see Fig. 6) or replace all of the spectrum components 
from the interpolated library spectra.  While the former method may yield better 
fidelity to the test spectra, the latter method can yield a result with fewer audible 
artifacts.  

Finally the reconstituted spectra are resynthesized to the individual instrument 
tracks using sinusoidal additive synthesis (Beauchamp, 1993). Frequencies and ampli-
tudes of  the corresponding harmonics are linearly interpolated and phases accumu-
lated between frames, with initial phases set to random values.  
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Fig. 6. The uncorrupted harmonics of an initially separated spectrum (denoted by .) are classified 
as clarinet and the collisions (denoted by *)  are replaced from the best-match prestored spectrum. 
Note that zero values in the initially separated spectrum are due to the test clarinet's spectrum 
above 2500 Hz being weaker than the training clarinet's spectrum in the same frequency range.  

3   Results 

Since at the current stage of our research our pitch detection algorithm does not per-
form well enough for subsequent instrument separation, we used F0s obtained from 
the solo tracks (see Fig. 7). Nevertheless, instrument matching was blind with respect 
to the source of each F0.  For each frame and each F0, instrument classification re-
sulted from matching the three corrupted harmonic spectra across all three instrument 
libraries. As it turned out, with the correct F0 contours, the correct instruments were 
chosen with 100% accuracy.   
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Fig. 7. Pitch contours estimated from the mixture signal (upper) and individual solos (lower) 

Original and the separated tracks were compared by listening and by measuring  
spectral rms error. Most audible artifacts in the separated tracks seemed to be due to 
unison and octave collisions. Nearly all harmonics of two instruments played in uni-
son are corrupted, while in the octave case every second harmonic of the lower voice 
and nearly all harmonics of the higher voice are corrupted. However, in practice, two 
voices are usually not pitched exactly an octave apart, so we could retrieve some up-
per harmonics of the higher tone in order to estimate its lower harmonics. Figs. 8, 9, 
and 10 each show spectrograms of the original instrument solo tracks and the corre-
sponding tracks separated from the mixture with collided harmonics replaced. 
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Fig. 8. Original (upper one) and separated  (lower one) clarinet spectra   

 

 

Fig. 9. Original (upper one) and separated  (lower one) trombone spectra 

 

 

Fig. 10. Original (upper one) and separated (lower one) saxophone spectra 

Audible differences between the original and synthetic tracks include a) inherent 
differences between original and best-match library spectra, b) loss of reverberation 
and other noise, c) occasional sound "bobbling" due to high occurrence of harmonic 
collisions, resulting in insufficient data to estimate the corrupted harmonics correctly, 
thus resulting in sharp discontinuities, and d) upper harmonic "chattering" due to 
switching between different library spectra. The latter effect is alleviated by LMS 
interpolation between the two best library spectra matches. 

Since the resynthesized tracks are not phase-locked with the originals, we cannot 
compute an accurate time-domain difference residual.  However, we can compute the 
rms difference between the time-varying harmonic amplitudes of the separated tracks 
and the originals. Fig. 11 shows graphs of relative-amplitude spectral rms error vs. 
time for the three instruments. The rms error was calculated using the equation 
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Fig. 11. Spectral rms error for clarinet, trombone, and saxophone 

where  j = frame number, J = number of frames, k = harmonic number, K = number of 
harmonics, xjk  = original track harmonic amplitude, x̂ jk  = separated track harmonic 

amplitude, and α is a constant scale factor which minimizes the error for the entire 
signal. The rms error is normalized by the average rms amplitude of the original sig-
nal instead of  rms value for that frame because in the latter case when the amplitude 
is very small the error gets extremely high although it is not really audible. 

Averaging the rms errors over time yielded  21.57% for the clarinet, 14.65% for 
the trombone, and 27.27% for the alto saxophone. Evaluating the performance by the 
spectral rms difference might be misleading because although the separated trombone 
has the lowest rms error, in the authors' opinion the clarinet sounds better. The origi-
nal, mixture, and separated samples can be found at http://ems.music.uiuc.edu/ 
beaucham/sounds/separation/. 

4   Summary 

Using pitch-vs.-time tracks derived from three non-harmonizing instrument solos with 
distinctive timbres and prestored independent instrument spectra to correct collided 
harmonics, we were able to separate the solos from their monaural mixture with rea-
sonable preservation of quality. rms spectral accuracy varied from about 14% to 27%. 
An objective evaluation of separation quality would be highly desireable but is non-
trivial because of the necessity of comparing to a standard level of degradation 
(Thiede et al., 2000).  We attempted to derive the pitch-vs.-time tracks directly from 
the monaural mixture, but the results were not accurate enough for reasonable quality 
separation.  However, our method has demonstrated that it is not necessary to have 
prior knowledge of each initially separated spectrum's instrument identity, because 
this is sorted out in the spectral matching process. 

5   Future Work 

First, we plan to try out different polyphonic pitch detection algorithms in an effort to 
improve this important, and ultimately necessary, analysis step.  Transition probabili-
ties between notes may be utilized. Second, we plan to increase the size of the spectral 
data base to handle a wider variety of instruments. Third, we will attempt to use  
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estimates of corrupting spectra in order to estimate the true amplitudes of corrupted 
harmonics so as to obviate their replacement.  Fourth, we will attempt to find note 
boundaries and optimize spectral choices over notes.  Fifth, we will attempt to utilize 
time behavior over notes (vibrato, beating) to more intelligently separate partials. 
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