Final Project Report
for

Sever Tipei's
Music 499B Proseminar
PROJECT-ORIENTED COMPUTER MUSIC

David Tcheng
May 1%, 2014

Goal

The goal of my class project was to develop software for smart phones to listen to ambient sound,
visualize it, and classify musical attributes of the sound it in real time to aid musicians in improving
their sound.

Feature Extraction

For music analysis, I took the approach of simulating the behavior of the human ear. The human ear
has roughly 3,500 “hair cells” which are devoted to detecting acoustic energy at different frequencies.
For the computer simulation, each hair cell is represented as virtual “tuning fork™ that vibrates when
exposed to acoustic energy in its frequency range. To prevent tuning forks from vibrating indefinitely,
a damping factor is applied to bleed off the energy of the tuning fork in controlled manner.
Mathematically, the original signal is passed through a bank of “band pass filters” which implement the
tuning forks. In addition to tuning fork simulation, I calculate the instantaneous energy of each tuning
fork by summing kinetic and potential energy after each sound sample is processed (e.g., 44,100 times
a second). Changes in the energy of the frequency detectors (tuning forks) form a “spectrogram™.

Initially, the tuning fork simulations (spectrogram computations) were coded in java. Running on a
modern Android smart phone, only about 128 tuning forks could be simulated in real time. To improve
speed, I used a new Android OS feature called “filterscript™ (a limited subset of “renderscript”) which
is a way for developers to access all the multiple processors, GPUs, and DSPs, on the smart phone
simultaneously. After spending a lot of time learning how to use “filterscript” on Android, which is
similar to doing kernel based programming on GPUs with CUDA, I was able to speed up the
computation by a factor of about 30x. Now I am able to simulate all 3,500 “hair cells” using a 16KHz
sampling rate.

Visualization

Visualization of sound is achieved by displaying a scrolling spectrogram in real time. Intensity is
maped to 11 discrete colors using the “heat™ color scale. The delay time between the sound and
visualization depends on android device and OS, but based on testing with my devices, the latency was
about 1/10th of a second.



Using a Samsung Note Pro 10.1 android device, I was able to display a 2500x1600 spectra in real time.
To aid visualization, the spectral energy of each is normalized so that even the softest sounds in the
room can be clearly visualized.

Using the real time visualization tool, I was able to “see” sound and recognize things I was unable to
perceive before. For example, while at a jazz club I was watching the room sound as I moved around.
Towards window I noticed a high frequency sound (that could not be heard due to live music being
played and due to its high frequency of around 10Khz). It turned out to be the neon light. In another
case I found a very high frequency (e.g. 24Hz) source in my bathroom. It turn out to be the charge of
my electric razor.

The real time spectral visualization gives incredible feedback to musicians as they can see intricate
spectral elements of their timbre. Inaccuracies in rhythm or pitch are blatantly obvious. I think
musicians in training would benefit greatly by the ability to “see” their sounds.

Finally, I think the deaf community could benefit from the real time sound visualization. If started at a
young age, I think a totally deaf person could learn how to decode human speech in real time using the
visualization. Because microphones are capable of recording frequencies both above and below the
threshold of human hearing, deaf people using state of the art microphones could learn to recognize
some sounds better than people with perfect hearing.

Real Time Music Analysis

There are two types of music analysis I worked on: (1) fundamental pitch detection for tuning
instruments, and (2) chord detection to help some people lacking real time chord detection skills better
Jjam with people and learn new music where only audio recordings are available.

For pitch detection I simulate a large number of tuning forks (e.g., 1024 frequencies ranging from 40Hz
to 10KHz) which covers the fundamental range of most instruments. The resulting spectra is analyzed.
A simplistic approach would be to find, for every point in time, the frequency with the highest energy
and report that as “the pitch”. However, since we are looking for the “fundamental pitch” which
assumes a harmonic instruments, we are looking not for the frequency with the strongest pitch, but
rather a fundamental frequency that explains as many of the harmonic energies as possible. The
fundamental pitch need not be sounded to be detected. The algorithm assumes a template for an
idealized instrument which has all harmonics but with each successive harmonic weighted to be 0.97
the weight of the previous harmonic. The algorithm attempts to match this harmonic template
computed for a wide range of frequencies to the current spectra and uses the best matching frequency
as the pitch prediction.

The resulting system did extremely well at detecting fundamental pitch of all musical instruments
except for percussive instruments with no obvious harmonic structure. I took my Android smart phone

to the local guitar shop to compare it with existing tuners. My algorithm seemed superior, especially
when trying to detect the pitch of “distorted™ guitars from across the room.

Note Detection

Since the system can accurately determine pitch in Hz, it is easy to determine what “note™ on a 12 tone



tempered scale is being played. Simply find the closest note to the measured pitch. The system
displays the name of the note is recognizing (e.g., C#) to the user as well has how sharp or flat the note
is in cents. In addition, the color of the note indicates tuning. When “green” the note is close to being
perfectly in tune. When “yellow™, the note is sharp, and when “blue” the note is flat. This proved to be
a useful approach to quickly indicating to the performer the state of the current notes tuning.

Chord Detection

For chord detection, I was able to detect major an minor chords accurate and quickly using the smart
phone. The algorithm used to detect chords is as follows:

(1) compute real time spectrogram at high resolution (e.g., 1024 bands)
(2) for each “note” (e.g., every note on the piano) compute the energy of the note in the spectrogram
(3) apply templates for each chord, major, minor, 7", etc. to find best match

For step (2), lower notes are given more weight than higher notes through the use of a weighting factor.
When computing the energy of each note, not all frequency bands are used, only ones that are close (+/-
20 cents) to the correct tuning.

The following java code shows how the algorithm distiguishes between major and minor chords.

. Intialization

for (int bandIndex = 0; bandIndex < numBands; bandIndex++) {
double octaveFraction = (Math./og(freq) - Math.log(13.75)) / Math.log(2.0);
int octavelndex = (int) octaveFraction;
octaveFraction = octaveFraction - octavelndex;

double noteFraction = octaveFraction * 12.0;
int notelndex = (int) (noteFraction + 0.5) % 12;

double delta = noteFraction - (int) noteFraction;
int cents = -1;
if (delta <= 0.5) {

cents = (int) (delta * 100);

} else {

)

cents = (int) ((delta - 1.0) * 100);

int minCents = 20;
il (Math.abs(cents) < minCents) {
bandNotelndices[bandIndex] = notelndex;
} else {
bandMotelndices[bandIndex] = -1;
}

freq *= bandToBandFactor;
}

. Each Time Frame



for (int i = 0; i < numNotes; i++) {
noteEnergies[i] = 0.0;

}

double weight = 1.0;
double endWeight = 1.0/ 128.0;
double weightReductionFactor = Math.exp(Math./og(endWeight) / (numBands - 1));
for (int i = 0; i < numBands; i++) {
il (bandNoteIndices[i] !=-1) {
noteEnergies[bandNoteIndices(i]] += weight * spectra[i];
}

weight *= weightReductionFactor;

}

double maxMajor3rdChordStrength = Double. NEGATIVE _INFINITY;
double maxMinor3rdChordStrength = Double NEGATIVE INFINITY;
int maxMajor3rdChordStrengthNoteIndex = -1;

int maxMinor3rdChordStrengthNoteIndex = -1;

for (int noteIndex = 0; noteIndex < numNotes; notelndex++) {

double majorChordStrength = 1000 * noteEnergies[(noteIndex + 0) % 12] + 1000 * noteEnergies[(notelndex + 4) % 12]

+ 1000 * noteEnergies[(noteIndex + 7) % 12];
double minorChordStrength = 1000 * noteEnergies[(notelndex + 0) % 12] + 1000 * noteEnergies[(noteIndex + 3) % 12)

+ 1000 * noteEnergies[(notelndex + 7) % 12];

if (majorChordStrength > maxMajor3rdChordStrength) {
maxMajor3rdChordStrength = majorChordStrength;
maxMajor3rdChordStrengthNoteIndex = noteIndex;

}

il (minorChordStrength > maxMinor3rdChordStrength) {
maxMinor3rdChordStrength = minorChordStrength;
maxMinor3rdChordStrengthNotelndex = notelndex;

Summary

I have demonstrated that smart phones are powerful enough for to provide real-time feedback to
musicians. Using low level native coding via Renderscript was effective at speeding up computation.
Audio visualization at high resolution can sometimes shows patterns that can not be heard. Harmonic
template matching works well for pitch detection. Using chord templates and lower note weighting
work well for chord detection.



