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1 Introduction

Intuitively, it might not be easy to understand that the creative process of an
artist is also an explorative one. But, bringing something into existence requires
being able to imagine experiencing it first. In this instance, the imagination
serves as an unmapped territory for the artist to explore. The objects residing
in this territory are often familiar. Yet, the artists exploration of their relation-
ships and/or transformations will often lead to the discovery of a configuration
that is unfamiliar. This discovery is initially quite exciting and may bring the
artist a great deal of pleasure. But as the exploration continues, and the artist is
able to understand the new discovery better, familiarity will lead to restlessness
which will ultimately push the artist to move on to new territory. This pattern
of exploration and discovery leading to comprehension in turn leading to fur-
ther exploration aligns closely with Jürgen Schmidhuber’s theory of creativity[2]
which serves as the part of the impetus for this current research project.

2 Motivation

The present work described in these pages is motivated by two somewhat un-
related projects: an exploration of computational creativity; and a data mining
project based around large record sets concerned with musical taste.

The first part of this present endeavor is an attempt to design a creative, gen-
erative system for composing music that is not predicated on repeating elements
nor pre-figured rules governing the unfolding of a score’s musical ideas. Instead,
a system design is imagined that leverages a machine learning technique known
as Adaptive Resonance Theory[1], or simply ART. In short, a generic fuzzy ART
implementation[3] has been extended to provide the ability to identify patterns
in an input vector, dynamically encode them into a neural network. Changes in
this network are subsequently monitored and leveraged to make decisions. This
system is designed to be not only capable of reflecting a individual’s ideas but
is also able to respond creatively to input from external sources.

To provide some context, the features of an autonomous agent designed to
compose music are many and varied. They include at least: pitch content and
pitch sequences, interval sequence and content, timbre, rhythm. Ultimately,
consideration for all of these features will be necessary to produce a wholly
satisfying compositional system. For now, efforts are focused on the design of a
component that can make creative decisions and a system that can effectively
leverage that component’s capabilities to produce coherent content.

1



The second project being brought to bear currently is centered around a
contest previously run by the International Conference on Auditory Display
(ICAD). The contest, a part of the 2012 conference embracing the theme ’Lis-
tening to the World Listening,’ was focused on a number of statistics derived
from Twitter data (see http://icad2012.icad.org/contest.html for details regard-
ing the competition). A web service was created for use by contest participants
to analyze and leverage the summarized Twitter data in the contest entries.

For the current endeavor, the data from the second project has been mined
and refined to train the computationally creative system from the first project.

3 Design of the Creative Component

3.1 Overview

In beginning our exploration of Schmidhuber’s theories, a system has been de-
vised that comprises two layers. The bottom layer, or feature component layer,
is made up of components designed to provide a candidate pitch to the higher
layer, the learner layer. A typical implementation would include a training
epoch in which both layers are presented with inputs presumably reflecting the
characteristics of the desired output. Then, the learner is asked to start making
decisions.

This begins with the bottom layer. A candidate is chosen by each of the
feature components and will be a pitch that receives the highest reward score
for that component. The calculation of the feature component’s reward is in-
dependent of the rest of the system. The feature components’ candidates are
passed to the higher layer which will choose its output from among these can-
didates. However in the case of the higher layer, the pitch chosen will be the
one that will effect the most change in the upper layer’s current world model.
The winner of the upper layer is then presented to the feature component layer,
so that its components may adjust their component-specific world models to
accommodate the upper layer’s choice.

3.2 Feature Component Layer

The feature component layer is designed to accommodate a variety of ways to
extract features from the system’s inputs. Each component needs to be able
to keep track of the world, be able to make a prediction that most closely
aligns with its model, update its world model from external input, and learn
from the updates to its world model where necessary. The mechanisms by
which it performs these tasks are left up to each component providing a great
deal of flexibility in how components are designed. Current experiments use
three feature components: match(M ), melodic continuation(MC ), and melodic
interval(Int).

3.2.1 Match

The Match component is designed to produce a candidate pitch that most closely
aligns with its current world model. It contains an STM and an ART. When
asked to make a prediction, this component will loop through every potential
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candidate. Each potential candidate is used to temporarily update the com-
ponent’s world model. This updated world model is in turn presented to the
ARTwhich calculates a reward for each of its nodes according to the formula:

R =

D∑
i=1

(min (Ii, wi))

a +

D∑
i=1

wi

where D is the size of the weight vector for a given node, I is the input
vector passed in from the ART, w is the vector of the nodes weights, a is called
the choice factor which is a very small number intended to ensure we do not
end up dividing by 0.

The pitch with the highest R is named M ’s candidate pitch.

3.2.2 Melodic Continuation

The goal of the MC is to provide the learner with some small notion of where it
has been recently and a desire to choose pitches close to those locations. This
serves to work in concert with M ’s intrinsic drive to choose things that have
already been chosen. The MC is simpler than M in that it only uses a single
structure to encode and make its predictions. An input is encoded in the MC
using the following:

wnew
n = max

(
wold

n , U
)

where n is the current probe input. Additionally, the pitches surrounding the
input pitch are decayed by:

wnew
n±s = wnew

n±sd

where s is the number of steps we are considering to be in proximity. The
reward for the current probe sum of the current weights for the MC are divided
by the sum of the new weights after the encoding of the probe pitch:

Rn =

D∑
i=1

wold
i

wnew
i

where w represents all the weights of the MC before and after the encoding.
This leads to a score that is always greater than or equal to 1 due to the way
in which the probe inputs are encoded.

Once all the probe pitches have been processed by the MC and the ART and
a winner is determined, the MC, in a final step, then applies the urgency factor
(U ) to the entire set of its weights:

wnew
i = wold

i

(
1 +

(
U
(
1 − wold

i

)))
The goal here is to have the weights gradually increase at a faster rate the

longer they remain unchosen. This is to imbue the MC with a greater need
to return to notes over time. In the long run, this approach prevents wild
divergences in the melodic shape of the system’s output.
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3.2.3 Melodic Interval

This component functions identically to M. However, it encodes its inputs
slightly differently. Where M encodes its input in a 1:1 fashion, Intencodes
the difference between two successive inputs. This acts as a foil to both M and
MC in that it will favor pitches that create distances to the previous pitch that
are similar to the distances represented by its encoding.

3.3 Learner Layer

The learner shares a common structure with both the M and Int feature compo-
nents. However, there are some differences between the learner and these other
components. Firstly, the reward calculation for the learner component is quite
different. Since the current system is intended to be a creative system, it follows
that it would be desirable for the learner to make an interesting choice. To that
end, the learner’s reward is calculated using how much change in the ART’s
weights a chosen pitch might cause using the calculation:

δW =

D∑
i=1

wold
i − wnew

i

Another difference between the learner and the other layers is that it is only
concerned with the pitches that are presented to it by the bottom layers. This
is in contrast to the evaluation of the entire pitch space that is performed by
the lower components.

A third difference between the learner and the lower layers has to do with
when its ART expands its collection of nodes to encode more information. Both
layers use a vigilance test trigger the creation of a new node if the ART fails to
find a node that is minimally able to accurately represent a change to its world
model. This vigilance score is calculated as:

V =

D∑
i=1

(min (Ii, wi))

a +

D∑
i=1

Ii

However, the learner’s ART will also expand its representation of the world
by creating a new node in circumstances where the δW, as calculated above,
falls below a threshold. In this way, it is ensured that the learner’s ART not only
has an accurate representation of its input, but also that that representation
does not become stagnant and overly specific. In this way, the learner is further
encouraged towards acting creatively.

4 Sonifying the System

Having run the system described above through a number of experiments and
verified that it behaves as designed, a more significant test using real-world
data seemed warranted. The data from the ICAD contest previously mentioned,
while not ideal, was more than adequate for this purpose.
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The ICAD dataset consisted of summary data pertaining to the mentions of
musical genres, called terms, in messages, called tweets, on the popular social
media tool, Twitter. Additionally, terms were correlated to the mention of
musical artists within the same tweets. The data points included which term,
which artist, the frequency of use of the term’s association to the artist, the
relative popularity of the artist, the artists’s location, etc.

The summaries were generated every 5 seconds and made available to the
participants via a web service. However, the implementation currently used only
consumed the web service once every 5 minutes. This seemed a good trade-off
between capturing trends and storage size. Thus, the data was collected in
batches every 5 minutes between December 12th, 2011 and January 26th, 2012.
This resulted in the collection of 1,114 unique terms, 12,000 unique artists and
over 7 million records where terms were associated with artists.

From a practical standpoint, it was necessary to set up constraints regarding
what data would be used. As the original inspiration for the project was borne
out of an interest in what terms were in use to describe music, the pruning of the
dataset began there. For the first step, the 25 most frequently used terms were
retained for use. From this list, a number of overlap terms could be identified.
Obviously owing to personal opinion, overlap terms were arbitrarily defined as
terms that were similar or simply a sub-genre of other terms, (e.g. pop, j-pop,
dance pop). This method of pruning practically reduced the top 25 terms to 12
(in order most frequently mentioned to least):

• rock

• hip hop

• pop

• electronic

• rap

• heavy metal

• alternative rock

• jazz

• punk

• funk

• blues

• neo soul

Upon arriving at this set of terms, the challenge became how to use them
as part of the sonification. Further interest in exploring the relationships of
these terms to other terms, the top 12 were simply filtered out from the rest.
However, the recordset’s size still proved a little unwieldy. At that point, it
seemed prudent to attempt to isolate the terms in time. Therefore, the 5 minute
segment, or batch, in which the terms were most often mentioned relative to
other terms became the focus of the sonification for that term.
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To give an example, for most batches the term jazz appeared in only about
5 percent of the tweets. However, in a batch from 2:25p on 12/23/11, jazz was
found in 12 percent of all tweets. This was the highest percentage that jazz ever
reached during the data collection period. In other words, this was the most
the term jazz ever dominated the conversation in the Twitter-verse during the
period of observation. Similar peak batches were identified for each of the terms
listed above.

From there, the data from each particular batch was then used to train the
creative agent, or learner, described in Section 3. Once trained, the learner was
then asked to generate some output. In turn, its output was used as input to
itself to generate new output. Both the training set data and the output of the
learner were sonified using parameterized MIDI messages.

While the actual work of refining the sonification of the data is somewhat
still a work in progress, some examples of strategies currently being applied to
the training set include:

• mapping a term to pitch

• mapping how frequently a term is used to MIDI velocity

• mapping an artist’s longitudinal location to a place in the stereo field

• mapping the importance of a term’s occurrence to note duration

Since the output of the learner does not share the same attributes as the ICAD
dataset, slightly different sonification strategies are used in this case. Some of
these are:

• mapping a term to pitch

• mapping relative reward score to MIDI velocity

• mapping relative differentiation of reward scores for candidate pitches to
note duration

Additionally, some random elements have been introduced in an effort to mit-
igate some of the unnatural effects arising unintentionally from unobserved
and/or uncontrolled musical parameters.

5 Conclusions

While the process has proved quite interesting, the resulting sonifications to
date have been somewhat unsatisfactory. In retrospect, a couple of reasons for
this are somewhat obvious: one having to do with the mining of the data and
the other with the approach to the actual sonification. Potential future efforts
will likely attempt to improve in both of these areas.

First, the data is not being derived from a musical process. While this is not
a prerequisite for a sonification project, the causal relationships in the dataset
(at least using the approaches outlined above) are somewhat obscured making
it difficult to differentiate the sonification from noise. To one who is familiar
with the learner, it is possible to see the learning and creative process work.
And, further investigation shows that the learner is performing as expected.
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But in order to produce more coherent or musical output from this dataset, it
is likely that it will need to be viewed from an artist-centric perspective instead
of a term-centric perspective. The appearance of an artist on a TV show, or an
album release has a quantifiable effect on the frequency of an artist appearing
in the dataset. There really is not correlate for a term. Thus, more coherent
output can potentially be derived by focusing on artists instead of terms.

Secondly, constraining the sonification to a MIDI realization has continually
proved somewhat frustrating. While a number of parameters can potentially be
controlled via MIDI, it is simply not well suited to the more sophisticated types
of transformations commonly used by contemporary electro-acoustic composers.
Even though a great deal was learned regarding the programmatic generation
and manipulation of MIDI messages during the course of the project, this ap-
proach will likely be avoided in the future as it has, thus far, led to undesirable
results.

In all, this project has proved both interesting and useful. A real world test
has been applied successfully to an ongoing project. This has helped to vet
the processes employed in that parallel project. Additionally, the opportunity
to explore an interesting dataset allowed for the discovery of some new ideas
regarding sonification. The work here is certainly yet complete, but the founda-
tion laid this semester has proved quite stable and should serve future endeavors
well.
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