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Abstract

The paper describes the algorithms used in MOSS, an additive
synthesis library, to realize sounds with a prescribed loud-
ness. Loudness is a perceived attribute of sound that depends
both on the amount of energy carried by the sound wave and
on the way this energy is processed by the ear-brain system.
The loudness routines in MOSS translate the target loudness
of a sound into amplitudes of the constituent partials. The
algorithms are based on equal-loudness data published by
the International Standards Organization and critical-band
data.

1 Introduction

Loudness is one of the most challenging concepts to im-
plement in a digital synthesis library. Loudness is a perceived
attribute of sound that has as much to do with the amount of
energy that the sound wave carries as with the listening en-
vironment and the processing of this energy in the ear-brain
system of the listener. Moreover, in a complex sound, hun-
dreds of waves interact, and specifying the amplitude of the
aggregate is simply not enough to achieve a desired loudness.

In this paper, we describe the algorithms used in MOSS
(Music Object-oriented Sound Synthesis) to realize sounds
with a prescribed loudness. Perceived loudness is one of the
degrees of freedom that the user can control. The loudness
routines in MOSS translate the target loudness of a sound
into amplitudes of the constituent partials. The algorithms are
based on equal-loudness data published by the International
Sandards Organization and critical-band data.

2 Loudness of a Pure Tone

In MOSS, a sound is constructed as a superposition of
partials—sinusoidal waves, each with a well defined frequen-
cy and amplitude (which may vary with time).

The definition of loudness of a pure tone (a single par-
tial) is based on the intensity of the sound wave. The inten-
sity is the energy flux across a unit area. If the intensity is I

(watts/m2), then the sound intensity level is

SIL = 10 log10(I/I0). (1)

Here, I0 is a reference value, taken to be 1.0 · 10−12 watt/m2.
The sound intensity level is distinct from the sound pres-

sure level, which is the quantity that is measured in a sound
pressure meter. If ∆p is the average pressure variation (new-
ton /m2), then the sound pressure level is

SPL = 20 log10(∆p/∆p0), (2)

where ∆p0 = 2.0 · 10−5 newton/m2. For a pure tone, the
average pressure variation is equal to the amplitude of the
wave divided by

√
2.

For a free progressive wave in air (that is, a plane wave
traveling down a tube or a spherical wave traveling outward
from a point source), the intensity is proportional to the square
of the amplitude, I ∼ (∆p)2, so the SIL and SPL coincide,
but this is not true in general. Nevertheless, the two are very
close, and it is a good approximation to identify the SIL and
the SPL. We denote their common value by the symbol L in
decibel (dB) units,

SIL ≈ SPL = L. (3)

In MOSS, ∆p is represented by the amplitude A of the
sound envelope. The latter is scaled to the interval (0, 1).
Thus, if Lm is the maximum value of L, then

L = Lm − 20 log10(1/A). (4)

The sensation of loudness is strongly frequency depen-
dent. For example, although an SPL of 50 dB at 1,000 Hz is
considered piano, the same SPL is barely audible at 60 Hz.
In 1933, Fletcher and Munson (Fletcher and Munson 1933)
published a diagram representing the results of a number of
loudness-matching experiments under free-field conditions of
listening; see Fig. 1. (A free field is an environment with-
out reflections.) The equal-loudness level contours—curves
showing the SPL required to make single, sustained, pure
tones equally loud—show clearly that, to be perceived as equal-
ly loud, very low and very high frequencies require higher
intensity levels than frequencies in the middle range of the
spectrum of audible sounds.



Figure 1: Equal-LL contours (Fletcher and Munson 1933, Fig. 4).

Loudness levels are measured in phons (singular phon).
The Loudness Level (LL) in phons, which we denote by Lp,
is numerically equal to the SPL in decibels at 1,000 Hz. The
Fletcher–Munson curves range from Lp = 0 (threshold of
hearing) to Lp = 120 (limit of pain) over a frequency range
from 25 to 16,000 Hz. The Fletcher–Munson curves are re-
produced in the monographs of Jeans (Jeans 1968, Fig. 59)
and Roederer (Roederer 1995, Fig. 3.13). Another set of
equal-LL contours was given in 1937 by Churcher and King
(Churcher and King 1937). The importance of the age of
the listener was shown by Robinson and Dadson (Robinson
and Dadson 1956). The contours for the younger age group,
which show local minima around 4,000 and 12,500 Hz, are
reproduced in the monograph of Rossing (Rossing 1982, Fig-
ure 6.4). The same contours were recommended for ages 18
to 30 over the frequency range from 20 to 12,500 Hz (up to
the second minimum) by the International Organization for
Standardization (ISO 1987; ISO 2003). New Standards were
published in 2003 (ISO 2003).

It is important to note that these equal-LL curves and their
counterparts, the equal-SPL curves (showing the loudness level
at constant SPL as a function of the frequency), represent sta-
tistical averages. Moreover, they are the results of experi-
ments in a reflection-free environment, so the loudness level
perceived in any other listening environment may very well
vary.

The quantity Lp still does not measure loudness in an ab-
solute manner: doubling Lp does not lead to the perception
that the tone is twice as loud. An absolute measure is given
by the LL in sones (singular sone), here denoted by Ls. It is
defined in terms of Lp by the formula (Rossing 1982, Sec-
tion 6.5)

Ls = 2(Lp−40)/10. (5)

This definition assumes that the perceived loudness doubles
whenever the loudness level increases by 10 dB, as found ex-
perimentally by Stevens (Stevens 1955).

In MOSS, loudness scaling is done on the basis of sones.
To achieve a given loudness, the software solves the inverse
problem of finding the envelope amplitude that yields the tar-
get LL at the given frequency. The solution requires three
steps, going from a given value of Ls first to Lp, then to L,
and finally to ∆p or A. The formulae for the first and last step

are obtained by inverting Eqs. (4) and (5),

Lp = 40 + 10 log2 Ls, A = 10−(Lm−L)/20. (6)

The second step, obtaining L from Lp, requires a functional
relationship between L and Lp, which needs to be obtained
from the equal-LL contours. Various approximations schemes
have been proposed in the literature.

Stevens (Stevens 1955) proposed a formula implying that
equal increments of L give equal increments of Lp and vice
versa,

Lp = a + L, L = −a + Lp, (7)

with a a constant. This approximation corresponds to the
power law approximation of Ls,

Ls = k(I/I0)
0.3, Ls = k(∆p/∆p0)

0.6, (8)

with a constant k = 2(a−40)/10. The exponent 0.3 = log10 2
was established experimentally for a pure tone of 1,000 Hz
(cf. Eq. (5)), and the suggestion was made that “for all levels
greater than 50 dB the loudness of continuous noises may be
calculated from the [same] equation.” The first of the two ex-
pressions [the one above] is quoted in Rossing (Rossing 1982,
Section 6.5). In a later publication, Stevens (Stevens 1970)
suggested that the exponent 0.6 in the second formula should
be 2

3 , so the law would fit into a general theory that sensory
perceptions obey universal power laws with exponents that
are simple fractions (like 2

3 ).
Steven’s law yields equidistant isocurves, clearly not a re-

alistic result in view of Fig. 1. A more realistic approximation
is obtained if expressions (7) are generalized to

Lp = a + bL, L = −a/b + (1/b)Lp, (9)

and both a and b are allowed to vary with f . Thus Lp still
varies linearly with L, but not necessarily at the same rate for
all frequencies. In this case, Steven’s power law (8) becomes

Ls = k(I/I0)
0.3b = k(∆p/∆p0)

0.6b. (10)

Robinson and Dadson (Robinson and Dadson 1956) pro-
posed a quadratic approximation,

Lp = a + bL + cL2, (11)

with frequency-dependent coefficents a, b, c. This approxi-
mation is not significantly better than the linear approxima-
tion (9); moreover, the computation of L from Lp requires
the evaluation of a square root.

The ISO publication (ISO 1987) gives a rational approxi-
mation,

Lp = 4.2+
a(L − T )

1 + b(L − T )
, L = T +

Lp − 4.2

a − b(Lp − 4.2)
. (12)

Here, T is the threshold value of the SPL at the given fre-
quency f , and a and b are frequency-dependent parameters;
4.2 phon is identified as the threshold of hearing at 1,000 Hz.



The approximation (12) can be modified in several ways.
For example, a simple rational approximation, which requires
a minimum amount of arithmetic, is

Lp =
a + bL

1 + cL
, L =

−a/b + (1/b)Lp

1 − (c/b)Lp
. (13)

For MOSS, we have chosen the expressions (13) over the
entire range of frequencies, 20 to 12,500 Hz, with table look-
ups for the coefficients. We constructed the tables by fitting
straight lines through the data in (ISO 1987, Table 3) (Lp as
a function of L at the tabulated values of f and using a cu-
bic spline interpolation procedure). In 2003, the International
Standards Organization revised these data (ISO 2003). The
new data do not affect the algorithm but may affect the values
of the coefficients in the expressions (13). Figure 2 shows the
equal-SPL curves at 2 dB intervals and the equal-LL contours
at 2 phon intervals, both extended to the full frequency range.
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Figure 2: Top: Equal-SPL curves. Bottom: Equal-LL curves.
From Eq. (13).

3 Critical Bands

The concept of loudness becomes more complicated when
two or more tones are superimposed in a sound, because the
way in which their individual loudnesses combine depends
on the closeness of their frequencies.

The loudness level of a sound composed of partials within
a critical band is computed from the total intensity I (Rossing
1982, Section 6.7),

I =
∑

i

Ii. (14)

Here, Ii is the intensity of the ith partial within the critical
band. The total intensity I is associated with the center fre-
quency of the critical band, and the LL for the critical band
in phones, Lp, is found from one of the approximations given
earlier.

The width of a critical band varies with frequency but
is independent of intensity (Zwicker, Flottorp, and Stevens
1957). A table of critical bandwidths was given by Zwicker
et al. in (Zwicker, Flottorp, and Stevens 1957, Table I), and
later used by Zwicker (Zwicker 1961) to propose a partition

of the frequency range from 20 to 15,500 Hz into 24 criti-
cal bands. An analytical expression to fit the bandwidth to
the data of (Zwicker 1961) was given by Zwicker and Ter-
hardt (Zwicker and Terhardt 1980).

In MOSS, the inverse problem is solved: Given the com-
position of a sound that consists of partials belonging to a sin-
gle critical band, the loudness level of the composite sound,
and the relative loudness levels of the partials, find the ampli-
tudes of the constituent partials.

Consider a sound consisting of n partials, where the fre-
quency of the ith partial is fi. The target loudness of the
sound is specified in sones, Ls, and the relative contribution
to the loudness of the ith partial is specified as a fraction of
some as yet unknown parameter Ls,1 (for example, the loud-
ness of the first partial),

Ls,i = γiLs,1, i = 1, . . . , n. (15)

We assume that loudness follows the general power law (10),

Ls,i = ki(Ii/I0)
0.3bi , i = 1, . . . , n, (16)

where, ki and bi are the values of k and b at the frequency fi.
We invert this relation and use Eq. (15) to find an expression
for the quantity Ii,

Ii = I0 (γiLs,1/ki)
1/0.3bi , i = 1, . . . , n. (17)

The sum of the intensities Ii gives the total intensity I of the
critical band,

I = I0

n
∑

i=1

(γiLs,1/ki)
1/0.3bi . (18)

This total intensity must yield the desired loudness Ls at the
center frequency fCB of the critical band. Therefore, if kCB

and bCB are the values of k and b, at fCB, we also have the
relation

Ls = kCB(I/I0)
0.3bCB . (19)

Substituting the expression (18), we obtain the identity

Ls = kCB

(

n
∑

i=1

(

γiLs,1

ki

)1/0.3bi

)0.3bCB

. (20)

This equation defines Ls,1. Once Ls,1 is known, we find the
loudness in sones of each partial from Eq. (15). From the
loudness Ls,i and the frequency fi we compute the size Ai in
the usual manner.

A considerable simplification occurs if we assume that k
and b are constant over the critical band, bi = bCB = b and
ki = kCB = k for i = 1, . . . , n. Then

Ls = γLs,1, (21)

where γ is a weighted mean of the fractions γi,

γ =

(

n
∑

i=1

γ
1/0.3b
i

)0.3b

. (22)



Combining with Eq. (15), we thus find the loudness in sones
of each partial,

Ls,i = (γi/γ)Ls, i = 1, . . . , n. (23)

4 Beyond the Critical Band

If the range of frequencies in a sound exceeds a critical
band, the resulting loudness is more than that of the criti-
cal band, but less than the sum of the loudness contributions
from adjacent critical bands. If the frequencies are densely
distributed, the sound is more like white noise, and Stevens’s
formula (Stevens 1956) applies,

Ls = Lm + F
∑

i6=m

Ls,i, Lm = max
i

Ls,i. (24)

Here, it is assumed that the frequency spectrum is partitioned
into bands of equal length (on the logarithmic scale), Ls,i is
the LL in sones of the ith band, and the sum extends over
all bands except the loudest. The factor F increases with
the bandwidth; F = 0.13 for third-octave bands, F = 0.18
for half-octave bands, and F = 0.3 for octave bands. Ross-
ing (Rossing 1982, Section 6.7), assuming a partition in oc-
tave bands, gives Eq. (24) with F = 0.3. If the frequency
spectrum is partitioned in a nonuniform way, Eq. (24) must
be modified,

Ls = Ls,m +
∑

i6=m

F (∆i)Ls,i. (25)

The loudness routine in MOSS implements an algorithm
of the inverse problem: Given the composition of a sound
with partials whose frequencies are spread over one or more
critical bands, find the amplitudes of the individual partials
that collectively give the sound its specified (perceived) loud-
ness.

The algorithm requires a partition of the frequency range.
The choice of this partition is to some degree arbitrary. In
the current version of MOSS, the entire frequency range is
partitioned once and for all into nonoverlapping bands. The
bands can be of fixed length (octave, half-octave, or third-
octave bands) or of variable length (the partition suggested
by Zwicker et al. (Zwicker, Flottorp, and Stevens 1957) or
the more generously rounded partition suggested by Zwicker
(Zwicker 1961).) Other methods, which take the actual distri-
bution of frequencies into account, are under consideration.

Once the frequency range has been partitioned, the next
problem is how to find the size of each partial so the complex
sound has the desired loudness. This problem can be solved
if we assume that the partition is such that k and b in Eq. (10)
are constant within each band, so the loudness of each band
can be computed by means of the simplified formulas (22)
and (23).

Consider a sound composed of partials distributed over n
bands. Assume that the ith band has ni partials. Let the target

loudness of the complex sound be given in sones, Ls, and let
the loudness of the jth partial in the ith band be specified as
a fraction γij of, for example, the loudness of the very first
partial,

Ls,ij = γijLs,11, j = 1, . . . , ni, i = 1, . . . , n. (26)

Let bi be the value of the exponent in Eq. (10) within the ith
band. Then the loudness in sones of the jth partial in the ith
band is given by

Ls,ij =
γij

γm +
∑

i 6=m F (∆i)γi
Ls. (27)

Here, γi is a weighted average of the γij over the ith band,

γi =





ni
∑

j=1

γ
1/0.3bi

ij





0.3bi

, i = 1, . . . , n. (28)

From the loudness Ls,ij and the frequency fij we compute
the amplitude Aij in the usual manner.
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