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1 Introduction

A digital instrument requires the formalization of the concept of sound and its
properties as well as the implementation of this formal framework in mathe-
matical algorithms. The algorithms are the foundation of the computer pro-
grams that make up the instrument.

One of the most challenging concepts to formalize is that of loudness.
Sound is transmitted through sound waves—pressure variations that cause
the eardrums to vibrate. This is the easy part of the problem. But loudness
perception has as much to do with the amount of energy that the sound wave
carries (its intensity) as with the processing of this energy that takes place in
the ear and the brain of the listener once the sound wave has hit the eardrums.
Although a number of psychoacoustic experiments focusing on loudness have
been performed, little research has been conducted into ways of precisely con-
trolling the perceived loudness of sounds regardless of their frequency or the
complexity of the waveform involved.

When a number of sounds are integrated in a piece, each sound being
described by a complex wave which in turn is the result of the summation
of a large number of partials, hundreds of waves interact with one another.
Specifying the amplitude of such an aggregate will not result in the desired
perceived loudness, because the human ear does not respond to intensity in
a uniform way across the frequency domain and the response depends upon



the specific distribution of the frequencies of the constituent partials over the
range of audible frequencies.

Another practical problem occurs when sounds with a wide dynamic range
are combined in a piece. Often, the computed amplitude exceeds the maxi-
mum allowable amplitude of the instrument (overflow, resulting in “clipping”).
Scaling the entire audiowave may allow maximum perceived loudness for the
high-amplitude fragments without clipping, but most likely will also result in a
scaling down of the soft sounds to the point that they disappear in the system
noise.

In this article we discuss these issues and their solution as implemented
in the loudness and anticlip routines of DISCO (Digital Instrument for Sonifi-
cation and Composition). DISCO is a collection of software written in C++,
which is being developed jointly by the authors at Argonne National Labora-
tory and the University of Illinois at Urbana—Champaign.

DISCO and its predecessor DIASS (Digital Instrument for Additive Sound
Synthesis) have been characterized as the Rolls Royces of digital instruments
because of their sophistication and the amount of control the user has over their
functionalities. They enable the user to generate sounds of arbitrary complex-
ity by the method of additive synthesis. In principle, there is no limit to the
number of partials in a sound or their complexity, and the parameters defining
a partial can be changed dynamically, either individually or collectively. Of
course, the more complex the sound, the more detailed the specifications that
define the sound.

DISCO takes the complete set of specifications and produces a score file,
which can be interpreted by an acoustic instrument or converted into a sound
file. Perceived loudness is one of the (dynamic) degrees of freedom of a sound
that are under the control of the user. The loudness routines in DISCO ensure
that each sound has the desired perceived loudness. The anticlip routines
addresses the problem of scaling the score file so the resulting sound file is free
from overflow (“clipping”) without affecting the relative perceived loudness of
the various sounds in the piece.

In Section 2, we address the formal definition of loudness and its imple-
mentation in the loudness routines of DISCO. In Section 3, we discuss the
anticlip routines.



2 Loudness

Since DISCO uses the method of additive sound synthesis, we think of a sound
as a superposition of partials—sinusoidal waves, each with a well defined fre-
quency and amplitude (which may vary with time). Hence, the definition of
the perceived loudness of a sound builds upon the definition of the loudness of
a single partial (pure tone). We discuss the case of a pure tone in Section 2.1,
the more complicated case of a sound all of whose constituent partials lie
within a critical band in Section 2.2, and the general case of a complex sound
in Section 2.3.

2.1 Pure Tones
2.1.1 Definitions

The definition of the loudness of a pure tone is based on the energy flow
or intensity of the sound wave. The intensity, denoted by I, is a function
of the sound pressure level (SPL) of the wave. The SPL is a dimensionless
quantity, which is obtained by dividing the average pressure variation Ap by
some reference value Apy. (The average variation of a quantity that varies
sinusoidally in time is equal to the amplitude of the variation divided by v/2 =
1.41.) The expression for [ is

I =20 log,o(Ap/App). p2i (2.1)

The unit of [ is the decibel (dB). The reference value Apy is usually identified
with the average pressure variation of a traveling wave of 1,000 Hz at the
treshold of hearing, Apy = 2.0 - 10™° newton/m?.

The sensation of loudness is strongly frequency dependent. For example,
although an intensity of 50 dB at 1,000 Hz is considered piano, the same
intensity is barely audible at 60 Hz. To produce a given loudness sensation,
we need a much higher intensity at low frequencies than at high frequencies.

In 1933, Fletcher and Munson [1] published their now famous diagram
representing the results of a number of loudness-matching experiments under
free-field conditions of listening; see Fig. 1. (A free field is an environment
in which there are no reflections.) The equal-loudness curves—curves showing
the intensity required to make (single continuously sounding) pure tones sound
equally loud—show clearly that, to be perceived as equally loud, very low and
very high frequencies require much higher intensities than frequencies in the
middle range of the spectrum of audible sounds.
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Figure 1: Equal-loudness curves [1, Fig. 4].

The (physical) loudness L, of a Fletcher—Munson curve is identified with
the value of the intensity [ at the reference frequency of 1,000 Hz. The unit
of L, is the phon (plural phons). The Fletcher-Munson curves range from a
loudness level of 0 phons (threshold of hearing) to 120 phons (limit of pain)
over a frequency range from 25 to 16,000 Hz. They are reproduced in the
monographs of Jeans [3, Fig. 59] and Roederer [4, Fig. 3.13].

Another set of equal-loudness curves was given in 1937 by Churcher and
King [2]. They show some significant discrepancies over parts of the auditory
diagram, probably because of the limited number of observations (Fletcher
and Munson reported 297 observations using eleven observers) and because
the observations did not discriminate for age. The importance of the age
of the listener was brought out in a series of experiments by Robinson and
Dadson [7] in the 1950s. Their results for two age groups are given in Fig. 2.
They cover a frequency range from 25 to 15,000 Hz and a sound pressure level
up to 130 dB (relative to 2.0 - 107° newton/m?).

The curves for the younger age group, which show two local minima
around 4,000 and 12,500 Hz, are reproduced in the monograph of Rossing [5,
Fig. 6.4]. The same curves are recommended for “otologically normal per-
sons within the age limits from 18 to 30 years inclusive” over the frequency
range from 20 to 12,500 Hz (up to the second minimum) by the International
Organization for Standardization [6].

The (physical) loudness L, still does not measure loudness in an absolute
manner: doubling L, does not lead to the perception that the tone is twice as
loud. An absolute measure is given by the (subjective) loudness L, which is
defined in terms of L, by the formula [5, Section 6.5],

L, = 2Lp=40)/10 94 (2.2)
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Figure 2: Equal-loudness curves; solid curves: age 20 years; dashed curves:

age 60 years [7, Fig. 8].

This definition assumes that the perceived loudness doubles whenever the
physical loudness increases by 10 dB, as found experimentally by Stevens [§].
The unit of L is the sone (plural sones). Loudness scaling in DISCO is done
on the basis of sones.

There have been several attempts to capture the functional dependence
of the loudness on frequency and intensity in an analytical expression. An ap-
proximate expression for L, in terms of the pressure variation, which bypasses
the intensity and the physical loudness altogether, was given by Stevens [9],

Ly = C(f)(Ap/Apo)*°. (2.3)

Here, C' is a parameter which depends on the frequency. A similar formula
with the power 0.60 instead of 2/3 is suggested by Rossing [5, Section 6.5].

In the ISO publication [6], the following expression is given for L, as a
function of the frequency f and the intensity I (our notation),

_ a(S)(I =T(f)) :
Lp_4.2+1+b(f)([_T(f)). (2.4)

Here, T' is the threshold value of the intensity at the given frequency, and a
and b are parameters which depend on the frequency f; values for selected
values of f are given in tabular form.

We propose a slightly different rational approximation,

LK)
b e L (T ) %)



where Lo is a constant scaling factor, Lo = 21.8033, and L;, L, and [ are
functions of the frequency f. The graphs of the functions L, Ly, and [, are
given in Fig. 3; selected values are given in Table 1.

Remark. The constant Lg, as well as the values of the functions Ly, Lo,
and Iy marked by the symbol x in Fig. 3 were obtained from a least-squares fit
of the isofrequency data (L, as a function of I at fixed values of the frequency
f) in [6, Table 3]. The graphs of Ly, Ly, and Iy, as well as their values given

in Table 1 were obtained from cubic-spline interpolations.
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Figure 3: Graphs of Ly, L, and Iy (spline interpolation).

The expression (2.5), combined with linear interpolation in Table 1, gives a
very good approximation (within the experimental error) of the equal-loudness
curves for all frequencies in the range from 20 to 12,500 Hz; see Fig. 4.

2.1.2 Implementation

We now turn to the actual implementation of the algorithms in the loudness
routines in DISCO. As stated in the Introduction (Section 1), the loudness of
a sound is one of its attributes to be specified by the user. Loudness is always
understood in the sense of perceived loudness and is specified in sones.

In the present section, we are concerned only with the simplest sounds,
namely sounds that consist of a single partial (pure tones).

While the user may think that the loudness of a pure tone is directly
related to its size (the amplitude of its envelope), we have seen in the preceding
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Figure 4: Equal-loudness curves, from Eq. (2.5).

section that the is actually a complicated nonlinear function of the amplitude.
The functional dependence is expressed graphically through the equal-loudness
curves or formally through, for example, Eq. (2.5). Hence, to achieve the
target loudness specified by the user, DISCO must solve the inverse problem
of finding the intensity that yields the target loudness at the given frequency.

The first step consists of the conversion of the specified loudness from
sones to phons. The inverse of the formula given in Eq. (2.2) is

L, =40+ 10 log, L. s2p (2.6)

To find the intensity that yields the target loudness (in phons), we have de-
veloped a formula that is inverse to the one given in Eq. (2.5),

1L+ L(f)(L = Lo(f)) :
I =1 , -121
"1+ L()(L = Lo(f))
where [ is a constant scaling factor, Iy = 55.3215, and [y, I, and L are

functions of the frequency f. With the frequency f specified in Hz and the
loudness L, in phons, the formula gives the intensity I in dB. The graphs of

(2.7)

the functions Iy, I3, and Lo are given in Fig. 5; selected values are given in

Table 2.

Remark. The constant Iy, as well as the values of Iy, I3, and Ly marked
by the symbol x in Fig. 5 were obtained from a least-squares fit of the isofre-
quency data (I as a function of L, at fixed values of the frequency f) in [6,
Table 2]. The graphs of Iy, I3, and Lg, as well as their values given in Table 2
were obtained from cubic-spline interpolations.
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Figure 5: Graphs of [, I, and Lo (spline interpolation).

The expression (2.7), combined with linear interpolation in Table 2, gives
a very good approximation of the equal-intensity curves for all frequencies in
the range from 20 to 12,500 Hz; see Fig. 6.

ss (phons)

Figure 6: Equal-intensity curves, from Eq. (2.7).

The SPL follows from the intensity 1,
Ap/Apy = 101/2°, i2p (2.8)

The amplitude a of the pure tone, which is a measure of the SPL, is stored as
a real number in the interval (0,1). The scaling is set by fixing the maximum
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allowable intensity, 1,,, so

a = (Ap/Apy) - 107 /20 = 10=Um=D/20, p2a (2.9)

2.2 Critical Bands

When two or more tones are superimposed, the way in which their individual
loudnesses combine depends on how close they are to each other in frequency.
In this section we discuss the case where the frequencies are the same or fall
within a critical band. The width of a critical band varies with frequency but
is independent of intensity [11]. We use the expression

Acp = 25+ 75(1 + 1.4(f/1,000)%)°¢ (2.10)
for the bandwidth of a critical band centered at f.

The loudness of a sound composed of partials within a single critical band
is computed from the total intensity I,

=Y. .01

Here, I; is the intensity of the ith partial within the critical band. The total
intensity [ is associated with the center frequency of the critical band. The
loudness of the critical band in phons is found from the equal-loudness curves
or from Eq. (2.5), and its loudness in sones from Eq. (2.2).

In DISCO, the inverse problem must be solved. Given the (perceived)
loudness of a sound whose constituent partials belong to a single critical band,
together with the relative size of each partial’s envelope, find the amplitudes
of the constituent partials.

Given the sound’s target loudness L and the center frequency of the
critical band, f, we can find the total intensity I of the sound by the method
described for pure tones in Section 2.1, using the equal-intensity curves of
Fig. 5 or the formula given in Eq. (2.7). The problem is how to distribute this
total intensity among the partials in the sound.

Suppose the sound consists of n partials. Let f; be the frequency of the ith
partial, and let its size a; (that is, the amplitude of its envelope) be specified
as a fraction v; of an adjustable parameter a,

a; =va, 1=1,...,n. (2.12)



An expression for the intensity [; of the ith partial in terms of 4; can be derived

from Egs. (2.1), (2.9), and (2.12),

I; =1, 420 loggvi + 20 logga, i=1,...,n. [l (2.13)

According to Eq. (2.11), the sum of these intensities must equal the total
intensity I of the sound,

I =nl, +20log,o(71-...v) + 20n log,, a. (2.14)
Solving this equation for a, we find
a=(yi...9)" 107 Un=1/n)/20, (2.15)

Having found a, we compute the unknowns a; for s = 1,... ,n from Eq. (2.12).
The sound is thus completely determined.

In a sense, it is more natural to specify the relative loudness of each partial
rather than its relative size. If the loudness of the first partial, L;, is taken
as an adjustable parameter, and the loudness of each partial is specified as a
fraction of it,

Lei=7~iLsy, t1=1,...,n, Lsi (2.16)

the procedure to find the amplitudes a; is not as straightforward, because
of the nonlinear dependence of the intensity on the loudness. But Eq. (2.3)
provides a useful shortcut if the factor C' is constant across the critical band.

First, we compute the total intensity I of the sound band from the target
loudness L; in the same way as before. Using Eq. (2.3), we obtain the value

of the constant C',
C =1L, 1071/, (2.17)

An expression for the intensity [; of the ith partial in terms of 4; can be derived

from Egs. (2.1), (2.3) and (2.17),
I; =30 log,ovi+30 log,o(Ls1/C) = 1430 logovi+30 logyo(Ls1/Ls). (2.18)
The sum of these quantities must equal the total intensity 7, so
(n— 1)1 +30log,o(71 .- )+ 30n log,o(Ls1/Ls) = 0. (2.19)
Solving this equation for L,;, we find
Loi=(y1...9,)Y"-1070-1/mIB0 (2.20)

Having found Lg;, we compute the unknowns L;; for ¢« = 1,... n from
Eq. (2.16). From the loudness L;; and the frequency f; we compute the size
a; in the usual manner. The sound is thus completely determined.
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2.3 Complex Sounds

If the range of frequencies in a sound exceeds one critical bandwidth, the re-
sulting loudness is less than the sum of the loudnesses of the individual critical
bands. Particularly, if the frequency differences are very large, a listener tends
to focus primarily on one component, for example the loudest one or the one
with the highest frequency, and assign a total loudness nearly equal to the
loudness of that component [4, Section 3.4].

An approximate formula for the loudness of a sound was given by Ross-
ing [5, Section 6.6]. Let L,; denote the loudness (in sones) of the ith critical
band, and let m be the index of the loudest critical band,

Lgm = max L. (2.21)

Then the loudness of the composite sound is approximately given by the ex-
Ly=TLem+03Y L, (2.22)
where the sum extends over all critical bands except the loudest.

pression

The implementation of this algorithm in DISCO requires again the solu-
tion of the inverse problem. Given the composition of a sound with partials
whose frequencies are spread over more than one critical band, find the am-
plitudes of the individual partials that collectively give the sound its specified
(perceived) loudness.

The first problem is how to divide the frequency range into critical bands.
The solution to this problem is to some degree arbitrary. In the current version
of DISCO, the lowest frequency f; in a sound is taken as the center frequency
of the first critical band, so the first critical band covers the range (fi —
%ACB(ﬁ),ﬁ + %Acg(fl)), where Acp is defined by Eq. (2.10) with f = fi.
The first frequency beyond the first critical band is associated with the center
frequency of the second critical band, and so on. Notice that, with this scheme,
the lower half of each critical band is empty. Also, this scheme allows for
overlapping critical bands, and it is possible that a partial falls within more
than one critical band. The implementation accounts for each frequency only
once, incorporating it in the critical band that is encountered first as one goes
up the frequency scale.

Alternatively, one could subdivide the entire frequency range once and
for all into nonoverlapping critical bands, using Eq. (2.10). Better methods
would take the actual distribution of frequencies into account. One possible
method would be to rank the partials in the order of the distance to their

11



nearest neighbor and center the first critical band mid-way between the first
and second partial, and repeat this process with the remaining partials, until
the entire frequency range has been covered.

Once the frequency range has been divided into critical bands, the next
problem is how to distribute the loudness, which is specified for the composite
sound, among the various critical bands.

To find the proper scaling, DISCO uses a predictor-corrector strategy. In
a first pass, the program estimates the relative contribution to the loudness
from each critical band; in a second pass, it corrects these estimates to obtain
the target value of the loudness.

To estimate the relative contribution to the loudness from each critical
band, the additive synthesis process is executed with the amplitude of one of
the partials in the sound as the unit of pressure variation amplitude. The
amplitudes of all the partials in the sound are specified as fractions of this
adjustable parameter. The intensity of each critical band is computed in ac-
cordance with Eq. (2.11), and the equal-loudness curves or Eq. (2.5) are used
to find the corresponding values of the physical loudness of each critical band.
These values are then converted to sones by means of Eq. (2.2). The result is
a vector of loudness values, one for each critical band,

(Lo 5, 2.9

From this vector one finds an estimate LS of the loudness of the sound (in
sones) by applying Eq. (2.22).

The computed loudness LS will, in general, be different from the target
loudness Lt. The ratio defines a scaling factor,

p=LYLE [p] (2.24)

In the second pass, the process is reversed. First, the scaling factor is applied
to each component of the vector (2.25),

(Lys L80) = (PLS s o pLE ). (2.25)

The vector of target loudness values (in sones) is converted to a vector of target
values in phons by means of Eq. (2.6), and the intensity of each critical band is
found from the equal-loudness curves (in reverse mode) or Eq. (2.7). Within
each critical band, the intensity is then equally distributed among the con-
stituent partials, and the corrected value of the pressure variation amplitude
computed in the usual manner.

12



3 Anticlip

When several sounds coexist simultaneously, their waveforms are simply added
to obtain the complete audiowave of the composition. As a result, the magni-
tude of the audio signal in the sound file may increase. For a digital instrument
that accepts sound files of a predetermined format the increase may result in
overflow. Overflow gives rise to clipping (a popping noise) when the sound
file 1s played—clearly, an undesirable result. The anticlip routine in DISCO
checks the score file for potential overflow and rescales the sounds as necessary
while preserving the ratio of perceived loudness levels. Thus, it is possible to
produce an entire sound file in a single run from the score file, even when the
sounds cover a wide dynamic range.

To appreciate the difficulty inherent in scaling, consider a sound cluster
consisting of numerous complex sounds, all very loud and resulting in clipping,
followed by a barely audible sound with only two or three partials. If the
cluster’s amplitude is decreased to fit the instrument’s format, and that of
the tiny soft sound following it is scaled in the same proportion, the latter
disappears under system noise. On the other hand, if only the loud cluster is
scaled, the relationship between the two sound events is completely distorted.
The anticlip routine in DISCO deals with this problem by adjusting both
loud and soft sounds so that their perceived loudness matches the desired
relationship and no clipping occurs.

The score is partitioned into segments, with breakpoints marking either
the entry or the disappearance of a sound. Thus, the composition is constant
on each segment, in the sense that no sounds appear or disappear during the
time interval covered by the segment. After converting the score file into a
sound file, DISCO checks whether and, if so, where overflow occurs relative
to the specified format. Segments where overflow occurs are marked, as are
neighboring segments that share sounds with the marked segments, neighbors
of these neighbors, and so on. Thus, stretches of the score are identified wihin
which all sounds are scaled. The scaling is done on the basis of perceived
loudness.

Several sounds superimposed within a segment do not differ fundamen-
tally from a single sound composed of the constituent partials of all the sounds
in the segment, so the loudness techniques described in Section 2 can be applied
to the segment marked by overflow. After computing the perceived loudness
of each critical band, the program finds the loudness of the segment by means
of Eq. (2.22). The latter is then reduced by reducing the loudness value for
each critical band by the same factor, which is estimated from the observed

13



amount of overflow.

Given the (reduced) loudness value of each critical band, the program
finds the pressure variation amplitude in the usual manner, as described in
the last paragraph of Section 2.3. A linearly decaying reduction scale is de-
veloped, which vanishes at the endpoints of the stretch of the score identified
for rescaling, and applied to the neighboring segments. If the resulting score
file still results in overflow, the reduction procedure is repeated with a larger
reduction, until overflow no longer occurs.
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Table 1: Function values for Eq. (2.5).

f Iy Ly Io
20 0.1039 0.0053 82.1131
21 0.1018 0.0052 79.4898
23 0.0998 0.0052 76.9334
24 0.0979 0.0051 74.4436
26 0.0960 0.0049 72.0207
28 0.0942 0.0048 69.6645
30 0.0925 0.0047 67.3903
32 0.0907 0.0045 65.2242
34 0.0888 0.0044 63.1668
36 0.0868 0.0042 61.2169
38 0.0849 0.0040 59.3425
41 0.0829 0.0038 57.5283
44 0.0810 0.0036 55.7745
47 0.0791 0.0035 54.0797
50 0.0773 0.0033 52.4391
53 0.0755 0.0031 50.8523
57 0.0738 0.0030 49.3192
60 0.0723 0.0028 47.8290
64 0.0710 0.0027 46.3745
69 0.0698 0.0026 44.9555
73 0.0689 0.0026 43.5727
78 0.0681 0.0026 42.2291
84 0.0674 0.0025 40.9252
89 0.0667 0.0025 39.6610
95 0.0662 0.0025 38.4206
102 0.0656 0.0025 37.1885
108 0.0649 0.0025 35.9645
116 0.0643 0.0025 34.7575
124 0.0638 0.0025 33.6248
132 0.0634 0.0025 32.5767
141 0.0630 0.0025 31.6133
150 0.0627 0.0025 30.7099
160 0.0624 0.0025 29.8329
171 0.0621 0.0025 28.9824
182 0.0618 0.0025 28.1592
195 0.0615 0.0025 27.3744
208 0.0611 0.0024 26.6310
222 0.0608 0.0024 25.9290
237 0.0604 0.0024 25.2669
253 0.0600 0.0024 24.6422
270 0.0596 0.0023 24.0549
288 0.0591 0.0023 23.5065
307 0.0586 0.0023 23.0171
328 0.0581 0.0022 22.5927
350 0.0576 0.0021 22.2333
373 0.0570 0.0020 21.9284
398 0.0564 0.0019 21.6551
425 0.0557 0.0018 21.4125
454 0.0551 0.0017 21.2012
484 0.0545 0.0016 21.0346
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f Iy Ly Io
517 0.0538 0.0015 20.9184
551 0.0530 0.0014 20.8528
588 0.0523 0.0012 20.8321
628 0.0515 0.0011 20.8398
670 0.0507 0.0010 20.8745
715 0.0499 0.0008 20.9366
763 0.0491 0.0006 21.0397
814 0.0482 0.0005 21.1923
869 0.0474 0.0003 21.3944
927 0.0466 0.0002 21.6235
990 0.0460 0.0000 21.7849
1056 0.0454 -0.0001 21.8677
1127 0.0451 -0.0002 21.8721
1203 0.0448 -0.0003 21.8188
1284 0.0445 -0.0004 21.7237
1370 0.0442 -0.0005 21.5868
1462 0.0440 -0.0006 21.4045
1560 0.0438 -0.0006 21.1555
1665 0.0436 -0.0007 | 20.8366
1777 0.0434 -0.0008 20.4477
1896 0.0432 -0.0009 19.9895
2024 0.0431 -0.0010 19.4629
2160 0.0430 -0.0011 18.8678
2305 0.0430 -0.0011 18.2074
2460 0.0431 -0.0011 17.5062
2625 0.0431 -0.0011 16.7691
2801 0.0433 -0.0011 15.9960
2990 0.0435 -0.0011 15.2781
3190 0.0437 | -0.0011 14.7330
3405 0.0438 -0.0010 14.3613
3634 0.0440 -0.0010 14.1670
3878 0.0442 -0.0009 14.1918
4138 0.0443 -0.0008 14.4470
4416 0.0445 -0.0008 14.9324
4713 0.0447 | -0.0007 15.7117
5030 0.0450 -0.0006 16.9059
5368 0.0453 -0.0004 18.5181
5728 0.0458 -0.0003 20.5342
6113 0.0466 -0.0001 22.7001
6524 0.0479 0.0002 24.9207
6962 0.0496 0.0006 27.1963
7430 0.0517 0.0011 29.3403
7929 0.0534 0.0015 30.8238
8462 0.0547 0.0018 31.6143
9030 0.0556 0.0019 31.7126
9637 0.0567 0.0020 31.2204
10,285 0.0582 0.0024 30.2092
10,976 0.0603 0.0029 28.6789
11,713 0.0628 0.0037 26.6297
12,500 0.0658 0.0046 24.0614




Table 2: Function values for Eq. (2.7).

f I I Lo
20 0.0067 | -0.0011 -35.1670
21 0.0059 -0.0016 | -30.7158
23 0.0054 -0.0020 | -25.8910
24 0.0051 -0.0022 -20.6924
26 0.0051 -0.0024 | -15.1202
28 0.0054 -0.0024 -9.1743
30 0.0059 -0.0024 -3.2165
32 0.0063 -0.0024 2.1256
34 0.0068 -0.0023 6.8409
36 0.0072 -0.0023 10.9365
38 0.0077 | -0.0022 14.6233
41 0.0081 -0.0022 17.9998
44 0.0085 -0.0022 21.0660
47 0.0089 -0.0021 23.8432
50 0.0093 -0.0021 26.4057
53 0.0098 -0.0020 28.7602
57 0.0101 -0.0020 30.9070
60 0.0105 -0.0019 32.9099
64 0.0108 -0.0019 34.8128
69 0.0111 -0.0019 36.6157
73 0.0114 -0.0019 38.3208
78 0.0116 -0.0019 39.9395
84 0.0118 -0.0019 41.4734
89 0.0121 -0.0019 42.9226
95 0.0123 -0.0019 44.3080
102 0.0125 -0.0019 45.6506
108 0.0127 | -0.0019 46.9503
116 0.0129 -0.0019 48.2008
124 0.0130 -0.0020 49.3596
132 0.0132 -0.0020 50.4193
141 0.0134 -0.0020 51.3798
150 0.0135 -0.0020 52.2686
160 0.0136 -0.0020 53.1228
171 0.0138 -0.0020 53.9427
182 0.0139 -0.0020 54.7262
195 0.0140 -0.0020 55.4511
208 0.0141 -0.0021 56.1112
222 0.0143 -0.0021 56.7066
237 0.0144 -0.0021 57.2414
253 0.0145 -0.0020 57.7228
270 0.0147 | -0.0020 58.1509
288 0.0148 -0.0020 58.5242
307 0.0150 -0.0020 58.8240
328 0.0151 -0.0019 59.0448
350 0.0153 -0.0019 59.1866
373 0.0154 -0.0018 59.2628
398 0.0156 -0.0018 59.3025
425 0.0157 | -0.0017 59.3067
454 0.0158 -0.0016 59.2749
484 0.0160 -0.0015 59.1916
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f I I Lo
517 0.0162 -0.0014 59.0503
551 0.0163 -0.0013 58.8509
588 0.0165 -0.0012 58.5991
628 0.0167 | -0.0010 58.3117
670 0.0169 -0.0009 57.9899
715 0.0171 -0.0008 57.6336
763 0.0173 -0.0006 57.2314
814 0.0175 -0.0005 56.7764
869 0.0177 | -0.0003 56.2684
927 0.0179 -0.0002 55.7450
990 0.0181 -0.0000 55.3640
1056 0.0182 0.0001 55.1435
1127 0.0183 0.0002 55.0829
1203 0.0183 0.0003 55.1090
1284 0.0184 0.0004 55.1657
1370 0.0184 0.0005 55.2529
1462 0.0185 0.0006 55.3815
1560 0.0185 0.0006 55.6135
1665 0.0185 0.0007 55.9587
1777 0.0185 0.0008 56.4172
1896 0.0185 0.0009 56.9755
2024 0.0184 0.0009 57.6180
2160 0.0183 0.0009 58.3445
2305 0.0181 0.0009 59.1487
2460 0.0180 0.0009 59.9834
2625 0.0179 0.0009 60.8392
2801 0.0180 0.0009 61.7160
2990 0.0180 0.0010 62.5216
3190 0.0180 0.0010 63.1370
3405 0.0180 0.0010 63.5616
3634 0.0180 0.0010 63.7900
3878 0.0179 0.0009 63.7658
4138 0.0179 0.0008 63.4742
4416 0.0179 0.0007 62.9151
4713 0.0180 0.0006 62.0522
5030 0.0180 0.0005 60.8165
5368 0.0179 0.0004 59.2063
5728 0.0179 0.0003 57.2365
6113 0.0177 0.0002 55.1800
6524 0.0175 -0.0000 53.1389
6962 0.0172 -0.0002 51.1129
7430 0.0168 -0.0005 49.2810
7929 0.0163 -0.0008 48.1513
8462 0.0159 -0.0011 47.7547
9030 0.0154 -0.0015 48.0905
9637 0.0149 -0.0019 49.0449
10,285 0.0146 -0.0023 50.5380
10,976 0.0142 -0.0028 52.5699
11,713 0.0140 -0.0033 55.1404
12,500 0.0138 -0.0039 58.2496




