MPl: A COMPUTER PROGRAM FOR MUSIC COMPOSITION

MP1: A COMPUTER PROGRAM FOR MUSIC COMPOSITION

MP1 is an algorithm translated into computer language which generates
music. It supplants part of the composer's routine work by trying to
simulate as closely as possible some of the operations D;’j?i(_‘h, presumably,
take place in his mind. Although compared to such intricate mental
processes, MP1 presently performs only a few simpler tasks, 1t Is a
starting point and a framework to which more complicated procedures
can be added. MP1 is designed to be used for very different musical

situations and by people with various degrees of musical training.

MP1 allows a wide range of choices concerning the style of the
composition itself as well as the taking Into account of patterns (melodic,
rhythmic motives) which can either be fed in as a pre-existent material,
or can be Invented at execution time. MP1's output consists of a string
of musical symbols which can be easily translated into a score for any'

combination of voices, Iinstruments and electronic sources.

The actual composer 1s the user and he has to have a precise
idea of the kind of music he wants. But the computer will perform
part of the routine work and it is conceivahle that a person with a
limited musical background but with creative gifts, and a professional
can attain comparable results when using MPI. However, they will both
obtain only the kind of music defined by the available features of the
algorithm., Obviously, it is of interest to add more sophisticated devices
to MP1's present options: the existent frame allows almost anything
desired by a composer to be incorporated If someone is willing to

contribute the necessary formalizing and programing effort.

MP1 is based on the following assumptions:

M& belong to the same vector space. Implication:
a composition can he recucced to & tensor.

"'uqumd}enct' relations modulo m can be defined on every
element of the vector =pace's Basis:

“FAnyTcontinuonsTsaCcess1on of sounds or of values for the
same sound parameter can be described either as a Markov
chaln, as a stochastic distribhution or as a random occurcnce,

“To _composc means to moke decisions, to m)ﬁ o o

, . S0 WIRAE SRl [, P

range of rm;:rnh ies taking 1nto account citner o set ol rules
or a chance operation or both. ' ' o

P

Detailed understanding of the passages marked with a VurtICdl Iine
I1s not an absclute necessity for the user.

What MP1 mainly does is to choose particular values for every
sound in the piece. The operation is executed successively in time
{from left to right in the score), at all PARTS (= sound sources)
simultaneously, in the very order they will be performed. To each
sound corresponds a CHOICE or a complete execution of the program's
" main loop. It includes selections of values for each of the sound
parameters (duration, frequency, amplitude, timbre, envelope) which
are taken into account.

A composition contains a set of simultaneous, parallel PARTS,
] Py, Pp, P3,...,Py, where 1, 2, 3,...m are ordinal numbers.

Usually, the PARTS are numbered in the same order they appear
in the score, from top, down: a flute, if present, will, probably,

be Pj, while a contrabass is very likely to be Pp,. However,
the user 1s free to arrange the instruments In the score as he
pleases,

Every CHOICE has an ordinal number which is the ordinal
number of the sound, counting all sounds and silences already
attributed to all PA}?TS from the beginning of the piece.

CHOICE 776

F A X
1

CHOICE 774
P2 7 X

CHOICE 775 CHOICE 777
P 1‘{ J}x’ _________ -l
J

CHOICE 773
PQ e X

MP1 takes into account in its computations both values and
intervals (difference between values). With every CHOICE a
value 1s assigned to each sound parameter. This is the actual
sound characteristic as far as frequency, amplitude, timbre or
envelope are concerned (G#, piano, for example). But for the
time dimension, the assigned value defines the duration of the
previous sound, the moment when the previous sound or silence
stops and the current one starts. For this reason, the output
printed at the end of a CHOICE relates to the values of the
previous sound In the same PART and to the duration (time
interval) defined by both the preceding time-value and the
current one:

CHOICE 777 wlf
P,) \S !

N
1
time 1012 @ 1016

frequency @ (-3) F
amplitude . (0) pliano

values intervals values

(circled values and intervals are printed following CHOICE 777)

Before beginning a new CHOICE, MPl compares the last assigned
values for the time parameter, at all PARTS, and finds out whose
string of durations (last time-value) Is smaller. Next CHOICE
will be at the respective PART.

The CHOICE itself is a conversion of gquantitative measurements
(obtained through comparisons with both a desired situation and
the previous decisions) into gqualitative judgments., A formula
of the type:

e-‘r(‘Pi "‘Pp)‘:L

is used. Here 7 1s a coefficient, p Is a value the composer
prefers for a particular parameter and whose variation in time

can be controlled through FUN (see page 9) and “P; 1is a candidate
value which 1s compared to . Because eU=1 and the value

of e~ decreases when n Increases, the smaller the difference

_\‘01-- \]Up, the more probable the assignment of \.FI'.

When the probabilistic option 1s in effect, any decision 1s influenced

- a preferred value for each parameter (see above)
limits within which CHOICES can be made

- registers

I

possible range (durations, pitches, dynamics, etc.) of the
sound-sources

- degree of coherence between simultaneous sounds in different
PARTS and between sequential sounds in the same PART

- degree of diversity allowed (how many discrete choices are

available within the chosen limits)

MP1 has a MEMORY where the Jast n CHOICES for each PART are
stored. This Is helpiul for any option (including probabilistic) because
any candidate value Is compared to the last ones assigned to all PARTS.

At the same time; it could become an elementary serial restriction.

After choosing a new time-value, MP1 decides if the duration
starting there will be either a sound or a silence; a DENSITY factor
is controlled by the user. The decision itself is made either by _
ascribing (through the previously mentioned mechanisms) a probability
of occurrence to every possible value, or by directly picking-up the

one with the biggest probability.

Another feature of MP1 is the optional use of PATTERNS. A PATTERN
is defined as a succession of elements (at one or more sound parameters)
which retain the same recognizable configuration throughout the piece.
They may differ for each sound parameter or they may be interconnected
in a sort of melodic sequence. At the present stage of MPI, the user
feeds in the PATTERNS but it is conceivable that they also can be created
at execution time. Although MPl now considers only PATTERNS of intervals,
this feature is extendable to value-PATTERNS, too.

When the PATTERN option is in effect, the following are available:

- The analysis of a given PATTERN

- The reproduction of a given PATTERN with variable degrees of
fidelity. This influences the probability of occurrence of the various
candidate values. If 100% accuracy is desired, all the other options
are short-circuited

- The analysis of the previous CHOICES, stored in MEMORY, is
used In order to see If any fragment of any PATTERN has been
accidentally reproduced

- If a s-equence of values belongs to more than one PATTERN, one
of them is favored, usually the one with a better chance to be reproduced

at more parameters

All data controlling any of MP1's features discussed above is subject
to variance in time (can take various values at different moments of the
. plece/. A way of controlling these variances is through a set of functions
similar to the elementary waves available In an electronic studio and which
are already rfuamiliar to most composers. Sine, sqguare or exponential
functions taken separately or combined can satisfactorily approximate almost

any wave shape (evolution 1In time) a user may nced.

Two modalities of beginning a plece are provided. One of them
considers the beginnz’ng of the piece a privileged moment and feeds in a
preconceived combination of sounds, like for any traditional western-music
composition. The second modality considers the music as a continuous
process which has begun before the first bar of the piece (the starting

point is not more Important than any other moment of the piece).

The printed output may have between three and five lines. The
leftmost string of characters in the first line reads "CHOICE" and is
fallowed by the ordinal number of the CHOICE. In the middle of the line
is indicated the PART (which sound source the CHOICE refers to_). The
third and last string on the first line contains the numerical values for
all sound parameters already assigned to the respective PART before the
current CHOICE. |

If the sound refered to was preceded by a silence, a special line
is printed (line #2 in the figure). It indicates how many of the smallest

time-units are between the last bar line and the beginning of the sound.

The next two lines display the main information about the sound.
First string in the second of these two lines Includes integers and/or
fractions whose sum equals the duration of the sound. They are spelled
in the way the duration should be written with regard to the meter and
to the bar lines, although they all relate to only one sound. When a
duration starts in one measure and ends Iin the next one after crossing
the bar line, the first of these two lines of output (line #3 in the figure)
will print: BAR followed by an ordinal number placed in such a way as
to show which part of the duration will fall in one measure and which

in the other. [For instance:

(1) CHOICE 250 PART 4
£ BEGINS 14 UNITS AFTER BAR 8
(3) BAR 9 ... etc.
(&) 1/8 114 1716
when o is the smallest time-unit znd the meter is 414, Is equivalent to:
8 9
{The fourth l l CHOICE 250 N I \ .«
sound source /& — Yy vy 5
in the score/: < ' _1/ ~——

For the next sound parameter (frequency) line #3 in the above figure
will read: 8VA. Underneath, line #, in the figure will appear the ordinal
number of the octave and the name of the note, in english letter notation.
The character # Is used for sharps and > for flats; if the ordinal number
of the octave is 0, no digit will be printed under 8VA. The way octaves
are numbered Is up to the user. However, a reasonable approach will be
to consider the lowest sound ever to be used in the plece as the first sound
in the lowest octave numbered as octave #0). If the lowest sound of the

plece 1s:

then

e
O

8VA will indicate: e
1 F #

On the same printed line, the information which follows refers to the
amplitude of the sound (pp, p, ff, etc.). If there is no change in amplitude

between two adjacent sounds, nothing is printed.

The second line from the bottom reads: PATTERN followed by one
string of digits for every sound parameter taken into account. There are
as many digits In a string as the maximum possible number. of PATTERNS
for that sound parameter in the whole piece. A digit shows what place

the current value occupies in the PATTERN., For instance,
(5) PATTERN 01300 503¢60 11367

indicates that there are three sound parameters taken into account (three
strings/, the maximum numher of PATTERNS in the piece is five (five digits
in a string) and that the current value of the first parameter can be found
as the rfirst one In the second PATTERN and the third onc in the third
PATTERN, the current value of the second parameter can be found on the
fifth place in the first PATTERN for this sound parameter, etc. This line

of printed output 1s optional. lore frequent is the indication:
(line 5 or 6) CONTINUATION 7

which informs the user that the current values of all sound parameters

-F -

belong to PATTERNS with the same ordinal number (7, in the example) and
have the same place in-all of them (probably, because they coincide In a

melodic sequence/.

MP1 is a cluster of interconnected and interchangeable subroutines,
each of them accomplishing a well defined task. Here is a brief
description of the principal subprograms (features) of MP1. There
are, also, a number of service subroutines dealing with rather elemen-
tary operations (like producing a set of random numbers, finding the
largest value In a set, writing equivalence relations modulo m, etc./,
which will not be discussed. :

MMAIN is the central coordinating system. It reads in all needed
information except for DATA related to PATTERNS or to PRECONceived
choices. It prints out the general information preceding the actual output
like number of PARTS, sound parameters, length of the PATTERNS, how
many PATTERNS are considered, length of the MEMORY, various coefficients,
RANGES, and so on. Generally, they are self explanatory and useful
mainly to the programer. In addition, the whole deck of DATA cards 1s
printed, allowing a double check of the information the machine receives.
No information related to PATTERns and to PRECONceived choices is printed
by MMAIN. As choices are needed, it calls in the subroutines to be used,
according to the options selected.

PATTER analyses the PATTERNS. It reads in the available PATTERNS
and prints them out, and sets up a four dimensional matrix :

ﬂ{(i’]"kﬁm)
where i is the number of sound parameters taken into account,] IS
the total number of PATTERNS, k is the degree of fidelity desired and
m is the ordinal number of the value in the PATTERN (its place in the
PATTERN).

START is an alternate to PRECON. It regards the:piece as a
process begun before the first note in the score. It assignes values
to all parameters for the last n sounds. or silences, at all PARTS,
preceding the actual beginning of the piece, where n equals the length
of the MEMORY. This is a chance operation and an arbitrary one; 1if
the user needs a smoother transition to the real piece, the first CHOICE
should be less than 0. This will allow time for the process of Incor-
porating all influences that may come from options and choices of values,
RANGES, PATTERNS, etc. decided by the user.

PRECON is an alternate to START. In accordance with western
traditional composition, it reads in a set of preconceived values describing
the first sounds of the picce; it also prints them out.

LIST enumerates all possible elemonts to choose a final wvalue from,
establishing a list of possible choices. A preferred value [see
on page 3/ for each member of the equivalence classes modulo m and
¢ variety factor (the cardinol numbor of the list or how long the list
can be! are given for hoth absolute values (noments in time, freguencies,
amplitudes, etc./) and intervals (durations, frequency intervals, variation
of amplitude, etc.). The list is trimmed through TRIM and SIEVES so
as to contain only elements within the range of the socund sources involved
and/or part of the modes or scales in effect. The list contains all
values ohtained both by using the preferred value plus the diversity
factor and by adding intervals to the last one assigned.

P fp«. \mefu;c =1 rrz,cm , "j‘&r &, 'L’f*’ J‘rcaiz, r[w&m / (::nf Lf fd; p@ﬁuu

B

"-ﬂli efow 3 iny L\«P{, Q(rcea(.u ctwyu- /(o.:J { P(‘«‘ /\oﬁlak

TRIM rejects any value which is outside the possible range or
which has already been included on the list through a diiferent procedure.

FUTURE compares every element from the list to a desired situation
{preferred value, preferred register or distance to the limits of the
given rangel. It makes use of the exponential formula on page 3.

PASPRE compares every element from the list both to the values
previously assigned to the same PART (and stored in MEMORY), to the
simultaneous values assigned to the other PARTS and to a desired
diversity factor. It also makes use of the exponential expression on
page 3.

PATTY looks 1if an element from the list matches any element of
any PATTERN and, 1f it does, it modifies the probability of occurrence
of the element according to a variant of BAYES' Theorem:

Py
p, = -
2;: Px
where aj (H)
p(ai) Tajy
Pk T Th
l -
Laj

J
and ?Pk is the sum of all pj. Also, P(a;) 1s the probability
of occurrence read from the M¢j ; L m) matrix, a;(H)= a; N
shows how many elements of the a; type precede the current one in
the PATTERN, La; is the total number of a; elements in the PATTERN
(the cardinal number of the PATTERN), Lh shows how many elements
of any type precede the current one in the PATTERN (its place). A
few more corrections are applied as to Increase the effectiveness of the
expression and to make it more flexible In various situations: they
distinguish if the reproduction of the PATTERN has started before the
current choice or if this 1s the first element to be matched to an element
of the PATTERN. The user can modify these coefficients through FORMPI.
When 100% accuracy Iin reproducing the PATTERNS is desired, PATTY gives
control to UPDATE, short-circuiting other operations and subroutines
in the seguence.

CHOOSE picks-up a value from those available on the list according
to its probability of cccurrence and a set of random numbers. This
i1s actually when a CHOICE is made.

DENSIT determines If the duration assigned at the current CHOICE
Is a sound cr a silence. FEouth a set of random numhbers, the analvsis
of whether sounds or silences were last assigned in the other FARTS
and a desired density are taken into account, In a Ieed-back tyvpe of
mechanism.

R Al e L R

RS {5 didled when & Baximam Bdefity an reprasdacine & PEFTEERR
1s needed, But, 1t calls itseit {entryv NORMALJ, TRIM and, if the propostd
value 1s rejected, command Is returned to the normal sequence of sub-
routines which provide a lesser degree of fidelity. Also, it permutes
the last chosen values in MEMORY so that the length of the MEMORY
remains constant: the last CHOICE is always stored In the first location
and at every CHOICE a value Is "forgotten:'

Values stored: a b c d Value assigned
Locations 1n at the current
MEMORY r || ory v CHOICE: x
becomes:
X a b c

I |11 (III |1V d s "forgotten"

The same thing happens to the indication that a duration is represented
by a sound or by a silence.

LOOKIN determines if the last assigned value is part of any PATTERN
and, If yes, of how many PATTERNS and what places it occupies in the
PATTERNS.

WHICH intervenes after a CHOICE is completely finished. If the
sound 1is part of more than one PATTERN and the degree of fidelity is
bigger than a certain limit, it chooses for all parameters one PATTERN
the sound will be considered to be part of. This will be helpful for
PATTY, LOOKIN or UPDATE at the next CHOICE. Favored are PATTERNS
which coincide at more parameters and in which the current value has
a smaller ordinal number (is placed closer to the beginning of the
PATTERN/.

FUN provides the functions and constants governing the structure
of the piece and their variations 1n time,

TYPLOO controls the lines of output as described on pages 5 to 7.

AUXIL is an auxiliary program to MP1 which prepares the MMAIN
program. It reads in part of the DATA and copies the appropriate
declaration and dimension statements directly on the file where MMAIN
1s stored,

MP1 is a collection of quite ahstract operations based on a number of
very general musical facts. All numeric or concrete information, from
coefficients to symbols for the printed output, are fed in through DATA cards
punched according to FORMP1, a form to be filled in by the user. For this
reason, all DATA can very easily be modified. New subroutines can be added
to MP1 at any time, performing different operations without disturbing the
basic frame, in the same woy a human being can increase through training
the number of musical procedures he employs. Also, it Is easy to use MPI
for non-musical situations 1f its fundamental operations are considered to relate

to other domains.

