
AUTOMATIC NOTATION OF COMPUTER-GENERATED SCORES FOR
INSTRUMENTS, VOICES AND ELECTRO-ACOUSTIC SOUNDS

William A. Burnson, Hans G. Kaper, and Sever Tipei

Computer Music Project, University of Illinois at Urbana-Champaign, Illinois, USA

ABSTRACT

This article proposes a new software system for automatic
representation and printing of computer-generated scores us-
ing traditional, proportional, and graphic notation. The soft-
ware system includes a composition module (CMOD) and
sound synthesis library (LASS)—both part of DISSCO—
and an open source C++ vector-graphics library Belle, Bonne,
Sage for music engraving. Various challenges to the process
of music notation are noted, and a detailed description of the
interface between DISSCO and Belle, Bonne, Sage is given.

1. BACKGROUND AND REQUIREMENTS

Traditional Western notation reflects the changes Western
music went through during the last seven or eight centuries.
Among these changes is an increase in the complexity of its
notation, culminating in the appearance in the second half
of the twentieth century of new symbols and entirely new
ways of representing music.

The problem of music notation presents a wide range of
challenges for music representation, for various reasons. It
renders pitch versus time using symbols that address dynam-
ics, articulations, clefs, harmonics, etc.; absolute propor-
tionality of time and pitch is corrupted by the use of sharps
and flats as well as by various symbols for individual dura-
tions; the notation of grace notes has more to do with long-
established conventions than with logic; etc. These chal-
lenges are compounded in some of the more recent schemes,
like proportional notation, where time, frequency, and some-
times amplitude are seen in graph form; and graphic nota-
tion, where musical events are presented through a combi-
nation of drawings, text, and symbols, similar to the Augen-
musik practiced by some Renaissance composers. Electro-
acoustic music has added a whole new class of challenges
by employing either sounds whose parametric values are in-
congruent with those present in traditional music (for ex-
ample, arbitrary frequencies or durations) or “objects” (tex-
tures) that are impossible to describe with the tools of the
common practice period.

In order to generate the score of a computer-assisted
composition for instruments, voices, and/or electro-acoustic
sounds, the alphanumeric output resulting from computa-
tions needs to be translated into some type of musical nota-

tion. Given the fact that even a relatively modest work in-
cludes thousands of sounds whose transcription when done
by hand takes days, it is easy to see why one would want to
avoid this tedious and error-prone activity. Furthermore, a
tool for automatic transcription would enable a composer to
see the results of his or her labors in a reasonable amount of
time.

Automatic transcription cannot be accomplished through
the MIDI protocol (as available from some editing applica-
tions), because of its severe limitations both with respect
to electro-acoustic textures and to contemporary instrumen-
tal or vocal extended techniques. A number of applica-
tions have addressed the issue, among them GrafPro, devel-
oped in 1989 at the University of Illinois Computer Music
Project, which dealt successfully with the rhythmic com-
plexities of traditional notation. (GrafPro is no longer in
use, since the printing was done through the Score Music
Publishing System, which has not kept up with recent devel-
opments in technology.) Pure Data (Pd), written by Miller
Puckette [6], is capable of rendering graphic images of the
electro-acoustic music objects it creates but does not han-
dle traditional notation. Other applications such as Com-
mon Music Notation [7], the PWGL-Expressive Notation
package [4], or FOMUS [5] have each solved some but not
all of the necessary requirements: automatic processing of
data; handling of both traditional, proportional, and graphic
notation; dealing with instrumental/vocal parts as well as
electro-acoustic sounds; and providing high quality, pub-
lishable documents.

In this article we describe an automatic music notation
interface between the computer-generated output for instru-
ments, voices, and synthesized sounds (DISSCO) and an
open source C++ vector-graphics library for music engrav-
ing (Belle, Bonne, Sage). [1]

2. DISSCO

The software around which this project is built, DISSCO [2],
includes a Composition Module (CMOD) and a Library for
Additive Sound Synthesis (LASS). Its output consists of mu-
sic for instruments and voices as well as digitally synthe-
sized sounds. Both categories are defined by a series of
familiar parameters: start time, duration, frequency, etc.,

along with more customized ones: transients, harmonics,
multiphonics, mutes, spatial location, reverberation, glis-
sandi, articulations and so on. As information about higher-
level structures is also available, DISSCO offers the option
to output icons to describe collective behavior—such as the
“boxes” in the music of Lutoslawski and other aleatory com-
posers, nonstandard symbols, or even drawings and text.
Such icons are identified through their type, a required fea-
ture of all events. An XML file containing selected informa-
tion about various structural levels assists the user in mon-
itoring the sequence of events. However, unless interfaced
with an engraving tool, monitoring a sequence of events is
only the beginning of the daunting task of manually tran-
scribing the output.

3. BELLE, BONNE, SAGE

Belle, Bonne, Sage[1] is a C++ vector-graphics library for
music notation and is a recent development in open-source
engraving. The library is built on an assumption-free model:
all structure is specified by the developer within its C++
abstractions of a score (collection of pages), and all draw-
ing is sent to an abstract painter, which may be a screen,
file, or other device. Conveniently, the library implements
a reference PDF painter to boot. As PDF has become the
most popular document exchange format for viewing and
printing, and since the specification contains a well-defined
conversion to its ancestor, PostScript, the format becomes a
comprehensive solution to the problem of precisely repre-
senting music notation in a modern format.

3.1. PDF Output

As PDF technology evolved, three fundamental graphical
entities developed independently: lines, paths, and fonts.
Music notation requires that these heterogeneous primitives,
each implemented with its own highly optimized scanline
rendering algorithm, be precisely joined together. For ex-
ample, a quarter note as typically described by notation soft-
ware consists of a notehead glyph from a music font and a
line for a stem whose length and thickness can be controlled.
Even when these two are perfectly superimposed, the differ-
ence in rasterization causes graphical anomalies at all but
the highest resolutions, and at higher resolutions any lack of
precision in the calculation of the stem-notehead join will
cause sharp corner artifacts to appear. The calculation is
nontrivial, since fonts can use different algorithms to con-
trol point size on different platforms. To circumvent these
problems, Belle, Bonne, Sage draws all shapes, including
lines and font glyphs, as complex filled paths by default.
The technique ensures that no matter the output device, all
graphic primitives are rasterized using the same generic al-
gorithm.

3.2. Assumption-Free Model

Belle, Bonne, Sage acts like a meta-engraver in that, instead
of accepting music content for input (for example, draw C4,
quarter note, beat one, measure one, in piano), the user de-
velops building blocks that create music content, a result
of the assumption-free requirement. However, the library
gives the user a choice of built-in assumptions. For exam-
ple, there is a method for drawing a half note that allows
one to specify the object’s position, size, stem width and
height, angle and proportions of the outer ellipse or the in-
ner rounded rectangular hole, and contains default values
for most of these parameters. From this information, the
method can return a single outline path containing the union
of the stem and notehead. In the event that this method is not
sufficient for drawing half notes, the user can simply write
another one. Since all objects are graphical rather than struc-
tural in nature, there are practically no constraints on what
is allowable. By taking this approach, Belle, Bonne, Sage
gradually increases its repertoire of useful tools for notat-
ing music without ever requiring an input whose format is
canned.

3.3. Collision Detection

Besides the lower-level primitives such as notes and other
fundamental musical glyphs, Belle, Bonne, Sage uses so-
phisticated layout protocols in order to guarantee that there
are no overlaps. The library provides several facilities for
collision detection at many levels of precision. For example,
any two glyphs (or set of glyphs) may be “magnetically” at-
tached at an arbitrary distance by calculating the closest dis-
tance, along some line, the two things may coexist without
overlapping.

Figure 1. Showing the various representations of a com-
plex glyph used during collision detection. The less precise
shapes are used first to rule out as many potential intersec-
tions as possible. Progressively finer levels of representation
are used up to the precision of the polygon outline.

The collision detection first begins at the level of bound-
ing boxes to rule out trivial cases of non-intersection, and
gradually applies higher precision shapes until the error is
arbitrarily small. The algorithm guarantees convergence us-
ing recursive distance bisection. Higher-level layout is cur-
rently being controlled by collision-based anchors which tie
(constrain) objects to each other along a connecting string
(line). With line-based anchors, objects can adjust dynami-

cally to new siutations following a simple priority scheme.

Figure 2. Showing a hundred or so complex glyphs com-
pacted as far as possible—with no overlaps—using pre-
cise collision detection. In reality, graphical objects have
more space around them: a cinch to adjust once the most-
compact-case has been solved for.

4. THE INTERFACE

Since DISSCO produces both note and sound events, Belle,
Bonne, Sage is ideally suited to generate scores containing
any mixture of tape, proportional, and rational (traditional)
notation. The resulting scores can be precisely and profes-
sionally notated.

An interface formats the alphanumeric output of DISSCO
via XML as input for Belle, Bonne, Sage. Since the gen-
eration of a piece may take an arbitrarily long time, it is
useful to save the output in an intermediate format so that
one can customize the appearance of the score without hav-
ing to regenerate the piece. As the transcription and layout
algorithms become more sophisticated, the appearance will
become more flexible and more options will be given to the
user regarding the processing of the intermediate form.

4.1. Intermediate XML Format

The following is an example of the beginning of an XML
file generated by DISSCO/CMOD. Elements that contain
<sound>...</sound> result in displaying an event in
the tape part; those that contain <note>...</note>will
produce notes in the instrumental part.

<events>
<event>

<name>T/0new</name>

<type>0</type>
<start-time-sec>0</start-time-sec>
<start-time-units>0</start-time-units>
<duration-sec>409</duration-sec>
<duration-units>409</duration-units>
<event>
<name>H/E0new</name>
<type>0</type>
<start-time-sec>0</start-time-sec>
<start-time-units>0</start-time-units>
<duration-sec>17</duration-sec>
<duration-units>17</duration-units>
<event>

<name>B/sE0viol00new</name>
<type>0</type>
<start-time-sec>0</start-time-sec>
<start-time-units>0</start-time-units>
<duration-sec>6.46</duration-sec>
<duration-units>775.2</duration-units>
<sound>
<name>S/adsr.11new</name>
<type>1</type>
<global-sound-count>0</global-sound-count>
<start-time-sec>2.75</start-time-sec>
<start-time-units>330</start-time-units>
<duration-sec>1.75</duration-sec>
<duration-units>210</duration-units>
<partials>5</partials>
<sones>252.518</sones>
<frequency>587.33</frequency>

</sound>
</event>
<event>

<name>B/n010</name>
<type>0</type>
<start-time-sec>2.02726</start-time-sec>
<start-time-units>8.10902</start-time-units>
<duration-sec>5</duration-sec>
<duration-units>20</duration-units>
<note>
<start-time-sec>2.02726</start-time-sec>
<duration-sec>4.20319</duration-sec>
<pitch>C</pitch>
<octave>1</octave>
<loudness>p</loudness>
<modifier>glissString</modifier>

</note>

4.2. Rhythmic Quantization

Transcribing arbitrary attacks and durations in proportional
notation is a simple task, but traditional notation requires
the use of select discrete values. DISSCO/CMOD solves
this problem by using the lowest common multiple (LCM)
of the subdivisions of the beat: if sixteenths (1/4), quintu-
plets (1/5) and sextuplets (1/6) are present, then LCM = 4 *
5 * 3 = 60 and the beat is divided into 60 units. With the help
of sieves [8] only select discrete values are allowed: 150 for
sixteenths, 120 for quintuplets, and 100 for sextuplets. Du-
rations are made to conform to the same set of moduli and
constrained to end on one of the possible attack points. The
same result can be obtained through large Markov matrices
covering a few beats at a time. The first procedure is more

deterministic, while the latter makes the selection of the next
attack and duration dependent on the previous choice and
includes elements of randomness.

Relying on the same type of mod operations, bars, beats,
and subdivisions of the beat are identified and durations are
split to properly show the way they encompass various beats
and bars. Figure 3 shows a quarter note duration that starts
in bar 18 on the third beat (3) after two sixteenths of a
quintuplet (24/60 = 2/5), completes the last three sixteenths
(36/60 = 3/5) of beat 3 and continues two sixteenths of a
quintuplet (24/60 = 2/5) into the fourth beat of the bar.

Start: Bar: 18 units
Beat: 3 + 24/60 units

Duration: 36/60, 24/60 units

Figure 3. Showing the ability of DISSCO/CMOD to cor-
rectly spell durations divided between two beats.

4.3. Spacing Coordination

Another dilemma arises when reconciling spacing in com-
binations of proportional tape notation and traditionally no-
tated instrumental parts. In traditional notation, music is
primarily spaced according to the sizes of the graphical ob-
jects that take up horizontal space. In proportional spac-
ing, however, a duration assumes a nonnegotiable horizon-
tal size. One way to accommodate both is to ensure that the
durations are spaced widely enough that the objects do not
collide in the traditional notation, which in some cases can
lead to excessively long scores.

A hybrid approach is contemplated so that notes under
a certain rhythmic threshold, say sixteenths, may assume
extra space as long as they do not push notes of a higher du-
ration off the proportional grid. Or better yet, all objects can
be defined to occupy dynamic, static, or minimum width.
For example, simple shapes in the electroacoustic part may
be easily compressed (perhaps to a minimum legible size) so
that they are dependent on the higher priority instrumental
mensural notation that will undoubtedly place several con-
straints the available space due to its much more complex
rules of convention.

5. FUTURE WORK

Another well-known problem is that of the correct spelling
of accidentals. The FOMUS library [5] contains a sophis-
ticated algorithm for realizing undetermined accidentals in
a conventional way by detecting melodic line ascension and

descensions. Since the music generated by DISSCO is usu-
ally atonal, matters of spelling are generally irrelevant; how-
ever, a new CMOD feature is currently under consideration
that would allow the user to control how the accidentals are
determined.

Although LASS is dedicated to additive synthesis using
sine waves, work is presently being done to include other
wave types as well as sampled sound objects. When im-
ported samples are used, information about their content or
the way in which they were generated is generally not avail-
able and a spectral analysis is necessary in order to include
them in a printed score. Such a feature could be borrowed
from or modeled after Michael Klingbeil’s SPEAR [3].

6. REFERENCES

[1] Burnson, W. A., “Introducing Belle, Bonne, Sage.”
Proc. 2010 Int’l Computer Music Conference, Stony
Brook, NY, 2010.

[2] Kaper, H. G. and S. Tipei, “DISSCO: A Unified Ap-
proach to Sound Synthesis and Composition.” Proc.
2005 Int’l Computer Music Conference, Barcelona,
Spain, pp. 375-378.

[3] Klingbeil, M., “Software for Spectral Analysis, Edit-
ing, and Synthesis.” Proc. 2005 Int’l Computer Music
Conference, Barcelona. pp. 107-110.

[4] Kuunskankare, M. and M. Laurson, “Expressive Nota-
tion Package.” Computer Music Journal, vol. 30 no.4,
pp. 67-79, 2006.

[5] Psenicka, D., “Automatic Score Generation with FO-
MUS.” Proc. 2009 Int’l Computer Music Conference,
Montreal, Canada, pp. 69-72.

[6] Puckette, M., “Pure Data: Another integrated com-
puter music environment.” Proc. Second Intercollege
Computer Music Concerts, Tachikawa, Japan, pp. 37-
41.

[7] Taube, H., “COMMON MUSIC, A Compositional
Language in Common Lisp and CLOS.” Proc. 1989
Int’l Computer Music Conference, Columbus Ohio,
pp. 316-319.

[8] Tipei, S., “Solving Specific Compositional Problems
with MP1.” Proc. 1981 Int’l Computer Music Confer-
ence, Denton, Texas, 1981, pp. 101-109.

	1 Background and Requirements
	2 DISSCO
	3 Belle, Bonne, Sage
	3.1 PDF Output
	3.2 Assumption-Free Model
	3.3 Collision Detection

	4 The Interface
	4.1 Intermediate XML Format
	4.2 Rhythmic Quantization
	4.3 Spacing Coordination

	5 Future Work
	6 References

