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ABSTRACT

DISSCO,  a  Digital  Instrument  for  Sound
Synthesis  and  Composition,  combines
computer-assisted  (algorithmic)  composition
and  sound  synthesis  in  a  seamless,  unified
approach.  Its  output  can  take  the  form  of
electro-acoustic sounds, a printed score or both.
In  DISSCO,  precise,  unequivocal  choices
coexist  with  random  options  that  could  be
introduced at all levels of a musical work. When
transcribing  the  output  of  a  computer-assisted
composition  into  a  musical  score  that  uses
traditional  Western  notation,  the  automatic
notation  of  complex  rhythms  is  arguably  the
greatest challenge. In DISSCO, this challenge is
managed  through  the  use  of  sieves,  logical
filters  involving  modulo  and  Boolean
operations.  Sieves  restrict  the  number  of
available choices and guide their selection but,
due to the randomness included in the process, a
series  of  further  adjustments  are  necessary  in
order  to  insure  that  the  output  is  compatible
with  the tenets  of  traditional  Western notation
system.  A number of methods that resolve these
issues  and  achieve  the  desired  result  are
described.   The final  output  consists  of a  text
file that follows the format of LilyPond, an open
source  software  that  can  produce  scores
engraved according to traditional layout rules.

1. DISSCO PROJECT

A Digital  Instrument  for  Sound Synthesis  and
Composition,  DISSCO,  combines  computer-
assisted  (algorithmic)  composition  and  sound
synthesis  in  a seamless,  unified approach.   Its
output  can  take  the  form  of  electro-acoustic
sounds, a printed score or both.           

In  DISSCO,  precise,  unequivocal
choices coexist with random options that could
be introduced at all levels of both composition
and  sound  makeup.  This  facilitates  the
production  of  multiple  variants  of  the  same
work,  creating  a  manifold  composition  (1),
when  the random generator seed is modified.  It
also underlines the experimental attitude behind
the project.

DISSCO is comprehensive in the sense
that it  does  not  permit  the intervention of  the
user once the computations have started and  it

delivers a final product which does not require
further adjustments. It is a “black box” meaning
that it reads in the data provided by the user and
outputs  a  finished  object,  the  piece,  in  a
uninterrupted process. This is necessary in order
to  preserve  the  integrity  of  the  operation:
modifying the results or intervening during the
computations would amount to the alteration of
the  data  or  of  the  logic  embedded  in  the
software, a falsification of the experiment.

Recently, a concentrated effort has been
directed toward the notation aspect,  somewhat
neglected in the past.  Since randomness could
be introduced during all stages of the process,
challenges arise when trying to notate the output
using traditional Western symbols.  In DISSCO,
such challenges are managed through the use of
sieves,  logical  filters  involving  modulo  and
Boolean  operations,  first  introduced  by Iannis
Xenakis (2).

1.1.  Sieves

The most obvious usage of sieves is in creating
pitch  scales.  However,  rhythmic  templates  or
selections  operating  on  other  aspects  of  a
composition could be handled as well with the
help of this powerful, abstract tool. 
 Constructing  a   sieve   requires  the
presence of a grid of equally distanced elements
such as the  equal temperament tuning and the
chromatic  scale  associated  with  traditional
Western  music  notation.   The   desired  set  of
pitches (eg. C major scale) is then selected from
the total chromatic with he help of a sieve, as
shown by Xenakis.

In  the  case  of  notated  rhythms  the
situation  becomes  more  complicated  if  along
binary  divisions of the beat. tuplets (divisions
by  three,  five,  etc.)  are  present.   In  order  to
accommodate  all  of  them  a  grid  is  needed
whose Elementary Displacement Unit  or EDU
is  1/LCM,  (Least  Common  Multiple)  of  all
selected  divisions  of  the  beat.   If  sixteens,
triplets,  quintuplets  (1/4,  1/3  and  1/5)  are
present, the beat will have a value of 4 * 3 * 5 =
60 EDU and,  for example,  multiples of 15 or
60  /  4  will  designate  start  times  for  all  the
sixteens in the piece. With the help of Boolean
operations one could build more discriminating
rhythms but a sieve of the form: 



120 U 150 U 200 (1)

will allow the use of quintuplets (120), sixteens
(150), and triplets (200).

Weights  can  be  attached  either  to
individual  moduli  or  to  particular  elements  of
the sieve output  defining their  probabilities of
occurrence.  This could be a valuable instrument
for implementing a hierarchy between beats in a
measure and between subdivisions of individual
beats.  In the following example, in a 3/4 meter,
the  down beat  (0)  receives  the  largest  ponder
followed by the third beat (8) while the second
beat (4) is assigned a lower weight mimicking
the distribution usually occurring in traditional
music.  Inside each beat, a similar arrangement
is initiated: 

sixteen  0   1   2    3    4    5   6   7     8    9  10  11
weight 20  5  12   8   10   2   5   3    15   5  10   8

table 1. Sieve weights

1.2. The problem.

In DISSCO, the automatic notation is  handled
by CMOD, the Composition Module.  The time
signature,  the  duration  of  the  beat  in  EDUs
(BeatEDUs),  are  selected  by  the  user  but  the
software generates in many cases random data.
Accordingly,  when designing the program, the
following issues have to be considered:

   1.  sounds may be  generated  in  a  random  
sequence  but  the  notation  component  
needs to handle them according to the  
time order.

    2. the start time and duration of a sound are 
randomly picked within a given range,  
but  the  end  time  could  have  a  value  
incompatible  with  Western  music  
symbols.

   3. LilyPond (an open source software which 
can translates a particular text file into  
a .pdf score file) is used but the language
syntax of LilyPond, was designed to be 
used by humans, not by computers. 

   4.  Since different time signatures alone could 
change the entire score, it is necessary to
design  an  algorithm  that  can  manage  
various such situations.

2. THE DESIGN

2.1. Generating and adjusting sound data

Three  classes  belonging  to  CMOD,   Note,
Matrix and  Output participate  in  the  notation
process.  Note holds all the features of a sound:
start  time,  end  time,  pitch,  loudness  and
"modifiers" or markings such as  accents, pedal,
8va signs, etc.  Matrix builds a 3D matrix (start
time * duration * type of sound),  insures that
start times and durations are values compatible
with the sieve and makes sure that sounds of the
same type  do not  overlap.   Output builds  the
text file .ly, which serves as input for LilyPond.
 Due to the fact that the Matrix class may
produce  cases  where  the  end  time  of  sounds
have values not allowed by the sieve and hence
incompatible  with  the  Western  notation,  it  is
necessary to:

1. Find  the  invalid-time  remainder  of  the
EndTime (EndTime mod BeatEDUs)

2. Construct a valid-time remainder vector
inside the Matrix class (sieve values)

3. Use  a  binary  search  to  locate  the  time
spot  closest  to  the  invalid-time
remainder  and  acquire  the  smallest
absolute  difference      (difference  =
invalid_remainder - closest_valid)

4. Subtract the difference from the original
EndTime                      
(new_End = EndTime - difference)

   The  reason  for  choosing  a  binary
algorithm in the second step instead of a linear
search is that when notating scores that employ
different  kinds  of  tuplets,  the  size  of  the
BeatEDUs  is  growing  fast,  along  with  the
number of valid positions allowed by the sieve.
Therefore, a linear search with time complexity
O(n) will result in large running time. Since the
valid positions are in a sorted array, applying a
binary  search  with  time  complexity  O(log  n)
will result in a much faster running speed.
    For example, a linear search on a sorted
array with size 32 will have, in the worst case,
32 operations. Applying a binary search on the
same array will only result in 5 operations, also
in the worst case. The advantage is even more
obvious  if  the  array  size  is  doubled:  64



operations with the linear search, compares to 6
operations with the binary search.

2.2. Data structure

A 2-dimensional vector is constructed according
to  the  time  signature  of  the  piece,  every  row
representing a bar. Then the randomly generated
sounds are sorted according to their  start  time
and pushed into the vector. 
    The  reason  of  building  a  2D  vector
instead of a single dimension one containing all
the sounds of the composition, is to divide  a big
problem into small ones. In traditional Western
music,  there  is  always  an  integer  number  of
bars, each  with a constant duration. By dividing
the  sounds  into  small  groups,  the  restrictions
and edge cases for the processing function can
be narrowed down, which will be convenient for
function  design  or  debugging.  Also,  if  the
processing function does  not  need to  consider
complex situations, the function itself will have
a higher time efficiency when executed.
    After all the sound data of the 2D vector
is  entered,  rests  are  added  filling  the  gaps
between  sounds.  Rests  have  the  same  object
structure  as  notes,  which  helps  in  later
calculations.
    When a long sound or rest lasts across
the  bar  line  and is  positioned  across  multiple
rows  of  the  2D  vector,  it  will  be  split  into
several parts, placed in the proper locations and
marked as “continuous sound” so that it will be
represented  as  a  note  with  ties  in  the  final
generating process.

3. FINAL NOTATION

3.1 Main logic

If the value of BeatEDUs - the duration of one
beat - is 60 and the time signature 4/4, then 60
will be a quarter note, 30 will be an 8th note and
20 will be an 8th note inside a triplet. However,
using  a  different  time  signature,  for  example
6/8, the BeatEDUs (60) will count as an eighth
note. In order to make the program compatible
with  different  time  signatures,  the  note  type
which represents a beat will be stored. Then, the
notation  function  will   select  the  other  note
types according to each value's proportion to the
BeatEDUs. 

   Since the start time or the end time of a
sound could be in the beginning, end, or middle
of one beat,  sounds and rests  need to be split
according  to  beats  in  order  to  be  correctly
notated.  Every sound is processed individually
and the method used to accomplish this involves
three main steps:

1. If the sound starts in the middle of the
beat  it  is  necessary  to  split  the  sound
first,  in  order  to  fill  this  beat,  usually
ending up with a tuplet.

2. If  the remaining part  of sound exceeds
the BeatEDUs (60 in this case), it will be
notated  with  relatively  large  notes
values.

3. If the sound does not end at the end of a
beat,  its  last  part  will  become  the
beginning  of  the  tuplet  waiting  to  be
filled in the next sound process.

figure 1 
Processing a sound that starts at 36 and ends at 150

   
3.2 Duration adjustments

Sometimes  there  are  edge  cases  that  deviate
from the  above  logic.   Sounds  are  created  in
random sequence and then sorted  according to
their  start  time (see 1.2).   Matrix makes sure
that  valid  sieve  values  are  assigned  to  start
times,  durations  and end times but  rests  -  the
time span between the end of a sound and the
beginning of the next one - are not considered
until  later.   Consequently,  some rest  durations
may end up with values which are not allowed
by the sieve and can not be notated. 
   In the example bellow which covers two
beats  (0-120)  and  shows  two  sounds
surrounding  a  rest,  BeatEDUs equals  60.  The
beginning and end times are  expressed by the
numbers between parentheses:

Sound1 (0,20)  Rest (20, 45)  Sound2 (45, 120)

   The sounds and the rest begin and end
in  valid  places  but  while  both  sounds  have



proper durations, the rest does not. The program
will build an eight-note triplet for the first beat
leaving a gap of size 40 to the end of the beat
that the following rest  and sound need to fill.
However, the Rest has an invalid duration which
can not be notated (45 - 20 = 25) . 
   The method we introduce to  solve  this
problem is to check if the duration of the rest is
consistent  with  the  current  tuplet  type.  If  not,
the rest and the next sound will be adjusted to
complete the  tuplet format. 
     This method involves 3 steps:

1. Find  out  the  largest  common  divider
between  the  duration  of  Sound1 and
BeatEDUs. Store the value as t_base

2. Find  out  a  multiple  of  t_base  that  is
close to duration of the rest

3. Adjust the duration and EndTime of the
Rest as well as the StartTime of Sound2.

    The largest common divider of  Sound1
duration and BeatEDUs is 20, then the potential
new duration for the  Rest will be either 20 or
40, Since 20 is closer to the original duration, it
will be chosen as the new duration. The original
sounds and the rest will be changed as follows:

Sound1 (0,20)  Rest (20, 40)  Sound2 (40, 120)

   The remainder of the work is to output a
text file following the LilyPond format (.ly) so
that a music sheet can be generated accordingly.
  
4.  CONCLUSION AND FURTHER WORK

When  transcribing  the  output  of  a  computer-
assisted   (algorithmic)  composition   into  a
musical  score,  the  automatic  notation  of
complex  rhythms  is  arguably  the  greatest
challenge.   It  can  be facilitated  by the use of
sieves,  abstract tools that offer a practical and
rigorous solution.  Sieves restrict the number of
available choices and guide their selection but,
due to the randomness included in the process, a
series of adjustments are necessary in order to
insure  that  the  output  is  compatible  with  the
tenets of traditional Western notation system. 

Transcribing frequencies, basic dynamic
markings as well as some other simple symbols
(ped.,  8va,  accents,  etc.)  is  a  trivial  task.
Dealing with multiple lines and chords should

also be a more or less straightforward exercise
as LilyPond offers easy access to such features.

A main  challenge  for  the  future  is  to
develop  the  capability  of  transcribing  electro-
acoustic events and combining them with vocal
or  instrumental  parts  in  a  coherent,  general
score.  It  is  anticipated  that  LilyPond's
capabilities  will  not  be sufficient  in  managing
this situation and that extra graphic devices will
have to be included.

figure 2 
Score printed automatically from random input
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