
AUTOMATIC NOTATION OF COMPLEX RHYTHMS USING SIEVES
IN DISSCO

Haorong Sun and Sever Tipei

Computer Music Project of the School of Music
National Center for Supercomputing Applications

University of Illinois

ABSTRACT

DISSCO, a Digital Instrument for Sound
Synthesis and Composition, combines
computer-assisted (algorithmic) composition
and sound synthesis in a seamless, unified
approach. Its output can take the form of
electro-acoustic sounds, a printed score or both.
In DISSCO, precise, unequivocal choices
coexist with random options that could be
introduced at all levels of a musical work. When
transcribing the output of a computer-assisted
composition into a musical score that uses
traditional Western notation, the automatic
notation of complex rhythms is arguably the
greatest challenge. In DISSCO, this challenge is
managed through the use of sieves, logical
filters involving modulo and Boolean
operations. Sieves restrict the number of
available choices and guide their selection but,
due to the randomness included in the process, a
series of further adjustments are necessary in
order to insure that the output is compatible
with the tenets of traditional Western notation
system. A number of methods that resolve these
issues and achieve the desired result are
described. The final output consists of a text
file that follows the format of LilyPond, an open
source software that can produce scores
engraved according to traditional layout rules.

1. DISSCO PROJECT

A Digital Instrument for Sound Synthesis and
Composition, DISSCO, combines computer-
assisted (algorithmic) composition and sound
synthesis in a seamless, unified approach. Its
output can take the form of electro-acoustic
sounds, a printed score or both.

In DISSCO, precise, unequivocal
choices coexist with random options that could
be introduced at all levels of both composition
and sound makeup. This facilitates the
production of multiple variants of the same
work, creating a manifold composition (1),
when the random generator seed is modified. It
also underlines the experimental attitude behind
the project.

DISSCO is comprehensive in the sense
that it does not permit the intervention of the
user once the computations have started and it

delivers a final product which does not require
further adjustments. It is a “black box” meaning
that it reads in the data provided by the user and
outputs a finished object, the piece, in a
uninterrupted process. This is necessary in order
to preserve the integrity of the operation:
modifying the results or intervening during the
computations would amount to the alteration of
the data or of the logic embedded in the
software, a falsification of the experiment.

Recently, a concentrated effort has been
directed toward the notation aspect, somewhat
neglected in the past. Since randomness could
be introduced during all stages of the process,
challenges arise when trying to notate the output
using traditional Western symbols. In DISSCO,
such challenges are managed through the use of
sieves, logical filters involving modulo and
Boolean operations, first introduced by Iannis
Xenakis (2).

1.1. Sieves

The most obvious usage of sieves is in creating
pitch scales. However, rhythmic templates or
selections operating on other aspects of a
composition could be handled as well with the
help of this powerful, abstract tool.
 Constructing a sieve requires the
presence of a grid of equally distanced elements
such as the equal temperament tuning and the
chromatic scale associated with traditional
Western music notation. The desired set of
pitches (eg. C major scale) is then selected from
the total chromatic with he help of a sieve, as
shown by Xenakis.

In the case of notated rhythms the
situation becomes more complicated if along
binary divisions of the beat. tuplets (divisions
by three, five, etc.) are present. In order to
accommodate all of them a grid is needed
whose Elementary Displacement Unit or EDU
is 1/LCM, (Least Common Multiple) of all
selected divisions of the beat. If sixteens,
triplets, quintuplets (1/4, 1/3 and 1/5) are
present, the beat will have a value of 4 * 3 * 5 =
60 EDU and, for example, multiples of 15 or
60 / 4 will designate start times for all the
sixteens in the piece. With the help of Boolean
operations one could build more discriminating
rhythms but a sieve of the form:

120 U 150 U 200 (1)

will allow the use of quintuplets (120), sixteens
(150), and triplets (200).

Weights can be attached either to
individual moduli or to particular elements of
the sieve output defining their probabilities of
occurrence. This could be a valuable instrument
for implementing a hierarchy between beats in a
measure and between subdivisions of individual
beats. In the following example, in a 3/4 meter,
the down beat (0) receives the largest ponder
followed by the third beat (8) while the second
beat (4) is assigned a lower weight mimicking
the distribution usually occurring in traditional
music. Inside each beat, a similar arrangement
is initiated:

sixteen 0 1 2 3 4 5 6 7 8 9 10 11
weight 20 5 12 8 10 2 5 3 15 5 10 8

table 1. Sieve weights

1.2. The problem.

In DISSCO, the automatic notation is handled
by CMOD, the Composition Module. The time
signature, the duration of the beat in EDUs
(BeatEDUs), are selected by the user but the
software generates in many cases random data.
Accordingly, when designing the program, the
following issues have to be considered:

 1. sounds may be generated in a random
sequence but the notation component
needs to handle them according to the
time order.

 2. the start time and duration of a sound are
randomly picked within a given range,
but the end time could have a value
incompatible with Western music
symbols.

 3. LilyPond (an open source software which
can translates a particular text file into
a .pdf score file) is used but the language
syntax of LilyPond, was designed to be
used by humans, not by computers.

 4. Since different time signatures alone could
change the entire score, it is necessary to
design an algorithm that can manage
various such situations.

2. THE DESIGN

2.1. Generating and adjusting sound data

Three classes belonging to CMOD, Note,
Matrix and Output participate in the notation
process. Note holds all the features of a sound:
start time, end time, pitch, loudness and
"modifiers" or markings such as accents, pedal,
8va signs, etc. Matrix builds a 3D matrix (start
time * duration * type of sound), insures that
start times and durations are values compatible
with the sieve and makes sure that sounds of the
same type do not overlap. Output builds the
text file .ly, which serves as input for LilyPond.
 Due to the fact that the Matrix class may
produce cases where the end time of sounds
have values not allowed by the sieve and hence
incompatible with the Western notation, it is
necessary to:

1. Find the invalid-time remainder of the
EndTime (EndTime mod BeatEDUs)

2. Construct a valid-time remainder vector
inside the Matrix class (sieve values)

3. Use a binary search to locate the time
spot closest to the invalid-time
remainder and acquire the smallest
absolute difference (difference =
invalid_remainder - closest_valid)

4. Subtract the difference from the original
EndTime
(new_End = EndTime - difference)

 The reason for choosing a binary
algorithm in the second step instead of a linear
search is that when notating scores that employ
different kinds of tuplets, the size of the
BeatEDUs is growing fast, along with the
number of valid positions allowed by the sieve.
Therefore, a linear search with time complexity
O(n) will result in large running time. Since the
valid positions are in a sorted array, applying a
binary search with time complexity O(log n)
will result in a much faster running speed.
 For example, a linear search on a sorted
array with size 32 will have, in the worst case,
32 operations. Applying a binary search on the
same array will only result in 5 operations, also
in the worst case. The advantage is even more
obvious if the array size is doubled: 64

operations with the linear search, compares to 6
operations with the binary search.

2.2. Data structure

A 2-dimensional vector is constructed according
to the time signature of the piece, every row
representing a bar. Then the randomly generated
sounds are sorted according to their start time
and pushed into the vector.
 The reason of building a 2D vector
instead of a single dimension one containing all
the sounds of the composition, is to divide a big
problem into small ones. In traditional Western
music, there is always an integer number of
bars, each with a constant duration. By dividing
the sounds into small groups, the restrictions
and edge cases for the processing function can
be narrowed down, which will be convenient for
function design or debugging. Also, if the
processing function does not need to consider
complex situations, the function itself will have
a higher time efficiency when executed.
 After all the sound data of the 2D vector
is entered, rests are added filling the gaps
between sounds. Rests have the same object
structure as notes, which helps in later
calculations.
 When a long sound or rest lasts across
the bar line and is positioned across multiple
rows of the 2D vector, it will be split into
several parts, placed in the proper locations and
marked as “continuous sound” so that it will be
represented as a note with ties in the final
generating process.

3. FINAL NOTATION

3.1 Main logic

If the value of BeatEDUs - the duration of one
beat - is 60 and the time signature 4/4, then 60
will be a quarter note, 30 will be an 8th note and
20 will be an 8th note inside a triplet. However,
using a different time signature, for example
6/8, the BeatEDUs (60) will count as an eighth
note. In order to make the program compatible
with different time signatures, the note type
which represents a beat will be stored. Then, the
notation function will select the other note
types according to each value's proportion to the
BeatEDUs.

 Since the start time or the end time of a
sound could be in the beginning, end, or middle
of one beat, sounds and rests need to be split
according to beats in order to be correctly
notated. Every sound is processed individually
and the method used to accomplish this involves
three main steps:

1. If the sound starts in the middle of the
beat it is necessary to split the sound
first, in order to fill this beat, usually
ending up with a tuplet.

2. If the remaining part of sound exceeds
the BeatEDUs (60 in this case), it will be
notated with relatively large notes
values.

3. If the sound does not end at the end of a
beat, its last part will become the
beginning of the tuplet waiting to be
filled in the next sound process.

figure 1
Processing a sound that starts at 36 and ends at 150

3.2 Duration adjustments

Sometimes there are edge cases that deviate
from the above logic. Sounds are created in
random sequence and then sorted according to
their start time (see 1.2). Matrix makes sure
that valid sieve values are assigned to start
times, durations and end times but rests - the
time span between the end of a sound and the
beginning of the next one - are not considered
until later. Consequently, some rest durations
may end up with values which are not allowed
by the sieve and can not be notated.
 In the example bellow which covers two
beats (0-120) and shows two sounds
surrounding a rest, BeatEDUs equals 60. The
beginning and end times are expressed by the
numbers between parentheses:

Sound1 (0,20) Rest (20, 45) Sound2 (45, 120)

 The sounds and the rest begin and end
in valid places but while both sounds have

proper durations, the rest does not. The program
will build an eight-note triplet for the first beat
leaving a gap of size 40 to the end of the beat
that the following rest and sound need to fill.
However, the Rest has an invalid duration which
can not be notated (45 - 20 = 25) .
 The method we introduce to solve this
problem is to check if the duration of the rest is
consistent with the current tuplet type. If not,
the rest and the next sound will be adjusted to
complete the tuplet format.
 This method involves 3 steps:

1. Find out the largest common divider
between the duration of Sound1 and
BeatEDUs. Store the value as t_base

2. Find out a multiple of t_base that is
close to duration of the rest

3. Adjust the duration and EndTime of the
Rest as well as the StartTime of Sound2.

 The largest common divider of Sound1
duration and BeatEDUs is 20, then the potential
new duration for the Rest will be either 20 or
40, Since 20 is closer to the original duration, it
will be chosen as the new duration. The original
sounds and the rest will be changed as follows:

Sound1 (0,20) Rest (20, 40) Sound2 (40, 120)

 The remainder of the work is to output a
text file following the LilyPond format (.ly) so
that a music sheet can be generated accordingly.

4. CONCLUSION AND FURTHER WORK

When transcribing the output of a computer-
assisted (algorithmic) composition into a
musical score, the automatic notation of
complex rhythms is arguably the greatest
challenge. It can be facilitated by the use of
sieves, abstract tools that offer a practical and
rigorous solution. Sieves restrict the number of
available choices and guide their selection but,
due to the randomness included in the process, a
series of adjustments are necessary in order to
insure that the output is compatible with the
tenets of traditional Western notation system.

Transcribing frequencies, basic dynamic
markings as well as some other simple symbols
(ped., 8va, accents, etc.) is a trivial task.
Dealing with multiple lines and chords should

also be a more or less straightforward exercise
as LilyPond offers easy access to such features.

A main challenge for the future is to
develop the capability of transcribing electro-
acoustic events and combining them with vocal
or instrumental parts in a coherent, general
score. It is anticipated that LilyPond's
capabilities will not be sufficient in managing
this situation and that extra graphic devices will
have to be included.

figure 2
Score printed automatically from random input

5. REFERENCES

1. Tipei, S. - Manifold Compositions: Formal
Control, Intuition, and the Case for
Comprehensive Software. Proc. 2007 Int'l
Computer Music Conference (Copenhagen,
Denmark, 2007), International Computer Music
Association, San Francisco, CA, 2007, pp. 429-
436

2. Xenakis, I. - Formalized music, Pendragon
Press, 1992. p. 197.

Acknowledgment:
This work is supported by the NCSA SPIN program.

http://cmp.music.illinois.edu/people/tipei/Papers/Files/manif07.pdf
http://cmp.music.illinois.edu/people/tipei/Papers/Files/manif07.pdf
http://cmp.music.illinois.edu/people/tipei/Papers/Files/manif07.pdf
http://www.computermusic.org/
http://www.computermusic.org/

	1.2. The problem.
	1. sounds may be generated in a random sequence but the notation component needs to handle them according to the time order.
	2. the start time and duration of a sound are randomly picked within a given range, but the end time could have a value incompatible with Western music symbols.

	3. LilyPond (an open source software which can translates a particular text file into a .pdf score file) is used but the language syntax of LilyPond, was designed to be used by humans, not by computers.
	4. Since different time signatures alone could change the entire score, it is necessary to design an algorithm that can manage various such situations.
	2. THE DESIGN
	2.1. Generating and adjusting sound data
	Due to the fact that the Matrix class may produce cases where the end time of sounds have values not allowed by the sieve and hence incompatible with the Western notation, it is necessary to:

	After all the sound data of the 2D vector is entered, rests are added filling the gaps between sounds. Rests have the same object structure as notes, which helps in later calculations.
	When a long sound or rest lasts across the bar line and is positioned across multiple rows of the 2D vector, it will be split into several parts, placed in the proper locations and marked as “continuous sound” so that it will be represented as a note with ties in the final generating process.
	3. FINAL NOTATION
	3.1 Main logic
	
	
	3.2 Duration adjustments
	figure 2
	Score printed automatically from random input

